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Abstract

The presented study investigated the classification of hearing loss types based on tonal audiometry
test results. A comprehensive multi-stage study was designed and executed, employing various
neural network architectures. This work was conducted in collaboration with the Department of
Otolaryngology at the University Clinical Centre in Gdansk, which provided the audiometric dataset
for the study. In the initial phase, a deep neural network architecture was proposed for binary
classification, differentiating between normal hearing and hearing loss. The subsequent phase
focused on classifying different types of hearing loss. To achieve this, various classification
algorithms have been tested on the collected dataset, including machine learning methods such as
random forest, logistic regression, support vector machine, stochastic gradient descent, and
decision trees, as well as neural network architectures such as multi-layer perceptron (MLP),
convolutional neural network (CNN), recurrent neural network (RNN), long short-term memory
network (LSTM) and gated recurrent unit (GRU). The knowledge gained from these experiments
was applied to develop a complete classification model based on the Bi-LSTM architecture (which
considered both normal hearing and specific types of hearing loss). The developed classifier
achieved a 99.33% accuracy result, which is state-of-the-art in classification of hearing loss type
based on audiometric data at the time of writing. The final phase of the research involved the
development of a mobile application that allows medical staff to identify the type of hearing loss from
a photograph of the test results taken with a smartphone. This required optimizing the classifier for
mobile devices and developing a method to digitize the audiogram using OCR techniques, Hough
transformation, and object detection with the YOLO architecture. The source code for the developed
application has been released under an open-source license to facilitate future enhancements with
additional features aimed at supporting the medical community.



Streszczenie

Tematem badan byta klasyfikacja typu ubytku niedostuchu na podstawie wynikéw badan audiometrii
tonalnej. W tym celu zaplanowano i zrealizowano wieloetapowe badania z wykorzystaniem
zréznicowanych architektur sieci neuronowych. Prace te zostaty przeprowadzone w $cistej
wspotpracy z pracownikami Kliniki Otolaryngologii Uniwersyteckiego Centrum Klinicznego w
Gdansku, ktérzy dostarczyli wykorzystywany w badaniach zbiér danych audiometrycznych. W
pierwszym etapie badan zaproponowano architekture gtebokich sieci neuronowych do klasyfikacji
binarnej, rozrozniajgc stuch prawidtowy od niedostuchu. W kolejnym etapie skupiono sie na
rozwigzaniu umozliwiajgcym klasyfikacje réznych typdw niedostuchu. W tym celu na zgromadzonym
zbiorze przeprowadzono testy algorytméw klasyfikacyjnych wykorzystujgcych metody uczenia
maszynowego, takich jak losowy las decyzyjny, regresja logistyczna, maszyna wektoréw nosnych,
metoda stochastycznego spadku wzdtuz gradientu i drzewa decyzyjne, jak rowniez architektury sieci
neuronowych, takie jak jednokierunkowa sie¢ neuronowa (MLP), konwolucyjna sie¢ neuronowa
(CNN), rekurencyjna sie¢ neuronowa (RNN), dluga pamie¢ krétkotrwata (LSTM) oraz bramkowane
jednostki rekurencyjne (GRU). Zgromadzone w ten sposéb doswiadczenia zostaty wykorzystane w
kolejnym etapie badan do opracowania opartego o architekture Bi-LSTM modelu klasyfikacji petne;j
(uwzgledniajgcego stuch normalny jak réwniez poszczegodlne typy niedostuchu). Opracowany
klasyfikator w przeprowadzonych badaniach osiggngt wynik 99.33% dokfadnosci, osiggajgc
najlepszy rezultat klasyfikacji typu niedostuchu na podstawie danych audiometrycznych wedtug
biezgcego stanu wiedzy. Finalnym etapem badan byto stworzenie aplikacji mobilnej umozliwiajgcej
personelowi medycznemu identyfikacje typu ubytku stuchu na podstawie zdjecia wynikow badan
wykonanego za pomocg smartfona. W tym celu dokonano optymalizacji opracowanego
klasyfikatora pod katem wykorzystania na urzadzeniu mobilnym oraz opracowano metode
digitalizacji audiogramu opartg na metodach OCR, transformacji Hougha i detekcji obiektow z
wykorzystaniem architektury YOLO. Kod zrédtowy opracowanej aplikacji zostat udostepniony na
licencji otwartej w celu utatwienia jej przysziej rozbudowy o nowe funkcjonalno$ci wspomagajgce
prace srodowiska medycznego.
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1. Introduction

1.1. Dissertation outline

This dissertation is based on a series of five publications, of which three are peer-reviewed journal papers
published in Springer Nature Scientific Reports and Journal of Automation, Mobile Robotics and Intelligent
Systems, while the two remaining papers are peer-reviewed conference papers published as conference
materials, indexed by renowned science databases such as Scopus, Web of Science and DBLP. The five
papers included in the series were published in 2022—2025. All five papers, which are included in this
dissertation, together comprise a consistent set on the topic of application of artificial intelligence algorithms
for analysis of pure tone audiometry.

The outline of this dissertation is as follows: the Introduction Chapter 1 Section 1.2 describes the motivation
for the research leading to this dissertation, in Section 1.3 the research hypotheses are formulated and
described, Section 1.4 outlines the scope of this thesis and Section 1.5 presents the series of publications
along with their scientific metrics.

In Chapter 2, a description of medical terminology is provided, along with a characterization of the data and
of the metrics that are utilized in the evaluation of models. Next, in Chapter 3, the research from the four
papers (P1 - P4) is summarized with detailed comment about author’s contribution to the state of the art in
terms of classification of hearing loss type. Chapter 4, based on paper P5, presents the original mobile app
proposed by the author. Chapter 5 summarizes all the presented and published research material and
outlines the future research areas. Chapter 6 outlines the computational resources that were utilized, while
Chapter 7 presents references. The final chapter of the dissertation, Chapter P, includes all the papers that
are part of the publication series for this doctoral dissertation, accompanied by statements of contribution.

1.2. Motivation

Auditory perception represents a crucial sensory function that is essential to the survival of humans and
animals alike. Any impairment in auditory abilities can significantly hinder communication skills, negatively
influence interpersonal relationships and jeopardize an individual's capacity to navigate and understand
their surroundings. Untreated hearing loss is recognized as the third most common cause of long-term
disability worldwide [1]. This condition crosses demographic lines, affecting individuals from a diverse range
of age groups, and leads to substantial consequences not only for those directly impacted and their families
but also for entire economic systems. The global economy encounters an estimated annual loss of around
1 trillion US dollars due to deficiencies in the diagnosis and management of hearing loss [1]. The urgency
of tackling this public health issue is further emphasized by forecasts suggesting a significant rise in the
incidence of hearing impairment in the forthcoming decades. Currently, it is estimated that more than 1.5
billion people suffer from varying levels of hearing loss, a number anticipated to increase to 2.5 billion by
2050, as reported by the World Health Organization (WHO) [1]. Addressing this looming crisis requires an
immediate and unified effort to raise public awareness, improve access to hearing healthcare services, and
implement effective intervention strategies that produce tangible results.

The timely identification and effective management of hearing impairment, especially in children, are crucial
for minimizing the adverse effects associated with auditory deficiencies. Research has shown that early
detection of hearing loss can significantly reduce the prevalence of auditory impairments in the pediatric
population, leading to improved developmental outcomes [1]. Medical and surgical interventions for ear
conditions have proven effective in restoring hearing function, frequently allowing patients to regain their
original auditory capabilities. However, the successful diagnosis and management of hearing loss
fundamentally depend on the availability of adequate and sustainable resources for hearing healthcare. A
major challenge to the effectiveness of hearing health systems is the lack of trained professionals who can
deliver essential audiological services [1]. This issue is particularly acute in low-income countries, where the
ratio of ear, nose, and throat (ENT) specialists is fewer than one per million individuals. The scarcity of
audiologists further complicates efforts to address the hearing health needs of these populations [1].

The complexity of the issue is further intensified by the fact that, though skilled hearing healthcare
professionals can manually detect and manage certain forms of hearing loss, many conditions can only be
precisely diagnosed through the use of pure tone audiometry - a technique widely regarded as the gold
standard for evaluating auditory function. This assessment method measures audiometric threshold shifts,
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thus enabling the categorization of hearing loss into distinct types: conductive, sensorineural, or mixed. The
degree of hearing loss can range from mild to profound, significantly affecting an individual's quality of life.
The use of pure tone audiometry is essential not only for individual diagnostic needs but also for enhancing
epidemiological studies and creating effective rehabilitation approaches [1]. The results of pure tone
audiometry are generally illustrated in an audiogram, which acts as a visual representation of the lowest
sound intensity, expressed in decibels, that a person can detect across various frequencies. This information
offers detailed insights into an individual's auditory abilities and serves as a vital tool for professionals in
developing tailored intervention plans for those experiencing hearing difficulties.

Artificial intelligence (Al) has the potential to mitigate the disparity between the availability of hearing
professionals and the growing demand for their services. Al employs algorithms that allow computers to
recognize specific patterns within data analysis and derive meaningful conclusions. This capability has
facilitated the formulation of research hypotheses, which are elaborated upon in section 1.3.

1.3. Research hypotheses

The research hypotheses, which have been the foundation of the presented dissertation, have been
formulated in 2021. Basing on the review of the state of the art in the area of automated hearing loss type
classification (more in Section 2.1), and the initial implementation of deep learning models in mobile devices
(details in Section 3.1), the following statements have been formulated:

H1. The application of modern neural network architectures to classification of hearing loss
types based on audiometric data can push the state of the art and deliver performance and
accuracy viable for introduction in clinical practice.

H2. Modern neural network architectures dedicated for processing raster and time-series data
are capable of accurate classification of raw tonal audiometry test results.

H3. It is possible to optimize modern neural network architectures to efficiently operate on
smartphones which cost less than 100 USD, thus providing healthcare professionals around
the world with a mobile application for classification of hearing loss types based on images
of hearing test results captured with a smartphone camera.

1.4. Scope and contribution

On the basis of the research hypotheses, formulated in Section 1.3, the following goals of this dissertation
have been defined:

G1. Review of existing classification models of pure tone audiometry data and their viability for
application in medical settings.

G2. Testing different neural network architectures on raw audiometry data to develop a model for
hearing loss type classification.

G3. Development of a deep learning model for hearing loss type classification which would be accurate
enough for implementation in clinical settings.

G4. Creation of a mobile application allowing the use of the previously developed model to classify the
type of hearing loss from a photograph of audiometric test results.

1.5. Series of publications

This section describes the series of five publications that comprise a consistent set on the topic formulated
as the title of this dissertation. The series consists of three journal articles and two peer reviewed conference
papers.



The first article [2], referred to as (P1), is a conference material prepared for the Workshop on Atrtificial
Intelligence for Next-Generation Diagnostic Imaging which was part of the 17th Conference on Computer
Science and Intelligence Systems (FedCSIS), hosted in Sofia in 2022. In the paper several different artificial
neural network models, including MLP, CNN and RNN, have been developed and tested for classification
of audiograms into two classes - normal and pathological represented hearing loss.

The second paper [3], referred to as (P2), is a conference material prepared for the Doctoral Symposium -
Recent Advances in Information Technology which was part of the 18th Conference on Computer Science
and Intelligence Systems (FedCSIS), hosted in Warsaw in 2023. In the paper several Al-based models were
used to classify audiograms into three types of hearing loss: mixed, conductive, and sensorineural.

Both paper [2] and [3] are indexed in renowned databases, including Web of Science, SCOPUS and DBLP.
The FedCSIS conference rank in the Computing Research and Education Association of Australasia
(CORE) ranking was assigned as B until November 2022, when the FedCSIS has been classified as
multiconference and not ranked. Moreover, the Computer Science conferences ranking [4] prepared for
2012-2016 based on Google Scholar Metrics for 2000 conferences places FedCSIS on position 216, which
is in the first quartile (Q1).

The third paper [5], referred as (P3), is a journal article published in 2024 in the Journal of Automation,
Mobile Robotics and Intelligent Systems — JAMRIS. The paper is an extended version of conference paper
P2 [3], which investigates the application of a wider range of Al based algorithms and neural network
architectures to the problem of classification of tree types of hearing loss. The paper also presents the
influence of training dataset augmentation with the use of a Conditional Generative Adversarial Network on
the results produced by different classification methods.

The fourth paper [6], referred as (P4), is a journal article published in 2024 in Scientific Reports. The paper
proposed a neural network model based on the Bidirectional Long Short-Term Memory architecture, which
has been devised and evaluated for classifying audiometry results into four classes, representing normal
hearing, conductive hearing loss, mixed hearing loss and sensorineural hearing loss.

The last paper [7], referred as (P5), is a journal article published in 2025 in Scientific Reports. The paper
presents a novel Open Source mobile application for the Android operating system that allows users to scan
and analyse audiograms using a smartphone camera and subsequently classify the type of hearing loss.

The details of each publications, including scientific metrics and Ministry of Education (MEIN) rank points
[8] are presented in Table 1.

Paper Title Authors Published in Scientific metrics Author’s
ID contributi
on
P1 Development of  Michat Kassjanski, Annals of MEIN points: 70%
an Al-based Computer
audiogram Marcin Kulawiak, Science and 70 in 2022
classification Information
method for Tomasz Przewozny  Systems, IEEE
patient referral (2022)
(2]
P2 Detecting type of Michat Kassjanski, Annals of MEIN points: 70%
hearing loss with Computer
different Al Marcin Kulawiak, Science and 70in 2023
classification Information
methods: a Tomasz Przewozny, Systems, IEEE
performance (2023)
review [3]



Paper Title Authors Published in Scientific metrics Author’s
ID contributi
on
P3 Efficiency of Dmitry Tretiakow, Journal of CiteScore: 0.9 70%
Avrtificial Jagoda Kurviowicz Automation,
Intelligence 9 ¥ ’ Mobile Robotics MEIN points: 70 (100
Methods for Andrzei Mol and Intelligent in 2023)
Hearing Loss ndrzej Molisz, Systems —
Type JAMRIS (2024
C}I/arl)ssification: an Krzy S,Z,tOf_ ( )
Evaluation [5] Kozminski,
Aleksandra
P4 Automated Kwasniewska, Scientific CiteScore: 6.7 70%
hearing loss type Reports (2024)
classification Paulina Impact Factor: 3.9
based on pure Mierzwinska-Dolny,
tone audiometry MEIN points: 140
data [6] Mitosz Grono
P5 Development Michat Kassjanski, Scientific CiteScore: 6.7 70%

and testing of an
open source
mobile
application for
audiometry test
result analysis
and diagnosis
support [7]

Marcin Kulawiak,

Tomasz Przewozny,

Dmitry Tretiakow,

Andrzej Molisz

Reports (2025)

Impact Factor: 3.9

MEIN points: 140

Table 1. The information regarding each publication that is part of the series, together with its scientific

metrics.
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2. The problem of hearing loss type classification

2.1. Pure-tone audiometry

Hearing impairment is primarily evaluated through the use of pure-tone audiometry, which is traditionally
performed in a soundproof setting while the individual is seated. This technique involves the presentation of
a series of pure tones that gradually increase in loudness, delivered at predetermined threshold levels,
usually via headphones. The aim is to determine the auditory threshold for both air and bone conduction.
Air conduction assesses the functionality of the entire auditory system, which includes the auricle and
extends to the auditory centers situated in the temporal lobe. Any level of impairment within this system
leads to a decrease in the air conduction curve. On the other hand, bone conduction evaluates the auditory
mechanism from the standpoint of the bony structure of the cochlea, bypassing the transmission of sound
through the outer and middle ear. Although it offers an alternative pathway for sound transmission, its
importance is generally regarded as lesser than that of air conduction. By employing pure-tone audiometry,
which assesses both air and bone conduction, it becomes possible to identify the characteristics of the
hearing deficit. Conductive hearing loss is usually linked to conditions affecting the external auditory canal
and/or the middle ear. In contrast, sensorineural hearing loss results from damage to the sensory cells
and/or the nerve fibers within the inner ear [9]. Mixed hearing loss signifies a combination of both
sensorineural and conductive hearing impairments [10]. Hearing loss can present as unilateral or bilateral,
may occur suddenly or develop gradually, and ranges in severity from mild to profound. Hearing impairment
is widespread, especially among individuals with auditory disorders and the elderly population [11].

2.2. Data

The results obtained from pure tone audiometry are usually represented through an audiogram, which
serves as a graphical representation that displays the minimum sound intensity, measured in decibels, that
a person is able to hear at various frequencies. This data offers a detailed understanding of an individual's
hearing capabilities and is an important resource for professionals in designing personalized interventions
for those with hearing issues [12].

The datasets utilized in all articles included in this series were sourced from adult patients who were tested
between 2010 and 2022 at the Otolaryngology Clinic of the University Clinical Centre in Gdansk, Poland.
Tonal audiometry evaluations were carried out in soundproof booths (ISO 8253, ISO 8253). The signals
were generated using calibrated Itera || and Midimate 622 clinical audiometers, produced by Madsen
Electronics (Otometrics, Copenhagen, Denmark) (PN-EN 60645-1, 1ISO 389, ISO 8789, ISO 7566, I1ISO
8798). The equipment was designed to accommodate corrections for ANSI S 3.6-1989 and 2004 standard
hearing levels. The assessment of participants' hearing through tonal audiometry followed the guidelines
established by the American Speech-Language-Hearing Association (ASHA) [13]. During air conduction
tests, the signal from the audiometer was connected to TDH-39P headphones. For bone conduction tests,
the audiometer was linked to a B-71 bone vibrator (New Eagle, PA). Each patient provided a maximum of
two test results, one for each ear, which ensured that there was no duplication of data from the same patient
and promoted a rich variety of data [6].

In addition to the audiograms, the provided datasets also encompass XML files generated by audiology
software, which contain comprehensive information about the tonal points present in the audiogram. In the
P1-P4 papers, XML files were utilized to analyze the raw audiometry data. A sample audiogram along with
a fragment of the corresponding XML file that includes the coordinates of the consecutive tonal points, is
displayed in Fig 1.
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Fig. 1. Two methods of representing tonal audiometry test results: audiogram (left) and XML (right) [6].

As shown in Fig 1, the horizontal axis of the audiogram represents frequency, which is quantified in Hertz
(Hz) and typically ranges from 125 Hz to 8000 Hz, encompassing the human hearing spectrum. The vertical
axis indicates the hearing level, measured in decibels (dB), usually spanning from -10 dB (indicating very
good hearing) to 120 dB (indicating profound hearing loss). A higher value on this axis means that the sound
must be louder for the individual to detect it.

Additionally, audiograms utilize specific symbols to denote the results of hearing tests for each ear. For the
right ear, the symbol "O" signifies air conduction thresholds, indicating the softest sounds the individual can
hear through air conduction, while the symbol ">" indicates bone conduction thresholds for the right ear,
showing the faintest sounds heard through vibrations applied to the skull. For the left ear, the symbol "X"
represents air conduction thresholds, and the symbol "<" indicates bone conduction thresholds.
Furthermore, symbols such as "O" and "A" may be used to indicate masked air conduction thresholds,
which are employed when testing one ear while the other is masked to prevent cross-hearing. The symbols
"[" and "]" can denote masked bone conduction thresholds [13].

2.3. Target metrics

2.3.1. Classification metrics

Classification metrics provide a way to quantitatively evaluate how well a classification model performs.
They offer a deeper insight into the model's effectiveness by taking into account various aspects, ranging
from the basic measure of accuracy to more complex metrics that differentiate between different types of
errors. This distinction can be crucial for a comprehensive assessment of the model's performance.

The metric that is most intuitive, which is accuracy, can be mathematically articulated as the ratio of correct
predictions to the overall predictions made for a certain dataset.

number of correct predictions

Accuracy =
Y = total number of predictions made

In many scenarios, evaluating accuracy alone is inadequate, particularly when working with an unbalanced
dataset. Therefore, to improve the assessment of the model, a confusion matrix is applied. The confusion



matrix is a table which indicates the number of correct and incorrect predictions made by the model against
the actual classifications found in the test set, in addition to the nature of the errors that were made. The
results from the confusion matrix can be divided into four categories:

True Positives (TP): when positive predicted was true;
True Negatives (TN): when negative predicted was true;
False Positives (FP): when positive predicted was false;
False Negatives (FN): when negative predicted was false.

From these four parameters (TP, FN, FP, and TN), one can compute precision, recall and the F1 score.
Precision is defined as the classification model's ability to accurately identify only the relevant data points,
which is calculated as the ratio of all samples the model has classified as positive to the actual number of
positive samples. Recall, in contrast, is the classification model's ability to identify all relevant data points; it
measures the number of positive class predictions made from all instances of the positive class. Finally, the
F1 score, is a single metric that combines both precision and recall, representing their harmonic mean.

procicion — TP
recilsion = TP +FP
Recall = — %
R

Precision * Recall

F1 =2
score Precision + Recall

Moreover, the performance of classification models is often depicted graphically in the form of the ROC
curve (Receiver Operating Characteristic curve) and the AUC score (area under the ROC curve). The ROC
curve demonstrates the balance between recall, which is also known as True Positive Rate (TPR), and the
False Positive Rate (FPR) at various decision thresholds. The FPR shows the share of objects falsely
assigned a positive class out of all objects of the negative class. In more precise terms, it pertains to the
percentage of negative data samples that are mistakenly classified as positive (FP) among all negative data
samples (TN + FP).

FP

F Positive R __
alse Positive Rate TN T FP

2.3.2. Object detection metrics

The problem of object detection employs metrics similar to those used in classification. However, this task
is more complex as it involves both localization (bounding box) and classification simultaneously. The
accuracy metric that assesses the overlap between the predicted bounding box of a detected feature and
the ground truth bounding box is known as Intersection over Union (loU). Additional calculations are also
derived from the confusion matrix, however, the TP, TN, FP and FN metrics need to be adjusted within the
context of object detection:

e True Positive (TP): This refers to a precise identification where the object detection model
successfully recognizes and locates objects, loU score between the predicted bounding box and
the actual ground truth bounding box meeting or surpassing a set threshold.

e True Negative (TN): This term is not applicable in object detection as it primarily aims to accurately
confirm the absence of objects. The primary objective is to detect and identify objects rather than
to validate their nonexistence.

e False Positive (FP): This denotes an erroneous detection, occurring when the model incorrectly
identifies an object that is absent in the ground truth or when the predicted bounding box has an
loU score that falls below the established threshold.

e False Negative (FN): This represents a failure to detect ground truth, occurring when the model
fails to recognize an object that is present in the ground truth, effectively indicating that it has
overlooked these objects.
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By employing the formulas defined in the preceding section it is possible to determine both precision and
recall. Precision is concerned with the accurate identification of relevant objects, whereas recall highlights
the model's ability to detect all ground truth bounding boxes. Collectively, precision and recall assess the
equilibrium between the quality and quantity of predictions.
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3. Automated classification of pure tone audiometry data

This chapter summarizes research on automated classification of hearing loss type, originally published in
four peer-reviewed papers (P1-P4). The research was divided into several stages. The first stage involved
creating a binary classifier to distinguish normal hearing from hearing loss (P1). This was followed by the
development of a three-class classifier distinguishing between the three types of hearing loss (P2, P3).
Finally, by integrating the experience and expertise from prior research, a complete classification model,
consisting of 4 classes (normal hearing, sensorineural hearing loss, conductive hearing loss and mixed
hearing loss), was proposed (P4).

Section 3.1 discusses the state-of-the-art. Section 3.2 describes the work related to creation of the binary
classifier. Section 3.3 outlines the work related to development of the classifier distinguishing between three
types of hearing loss. Section 3.4 presents the full automated classifier of hearing loss type.

3.1. State-of-the-art in audiometry data classification

In the realm of medical practice, the identification of hearing impairment types is based on pure-tone
audiometry test results, which are analyzed according to their configuration, severity, lesion location (type
of hearing loss) and symmetry [14]. The lesion's site is determined by the air and bone conduction thresholds
on the audiogram, while the configuration is characterized by its shape. The severity is assessed by the
degree of hearing loss.

The area of automatic audiometry data classification has been explored for a considerable duration
overtime. In the last decade, multiple attempts have been made to establish an automated classification
method that is accurate enough to be applied in practice. This work can be categorized into two main
thematic areas: the classification of audiogram shapes to determine the initial configurations of hearing aids
and the diagnosis of hearing loss types. In the first category, there are numerous documented attempts
found in the literature, beginning with Chelz Belitz et al [15], who integrated unsupervised and supervised
machine learning techniques to correlate audiograms with a limited number of hearing aid configurations.
More recently, Abeer Elkhouly et al [16] proposed a machine learning solution to classify audiograms into
hearing aid configurations based on their shapes using unsupervised spectral clustering. The topic of
automatic hearing aid configuration is a popular one [17,18,19], yet it is quite distinct from the focus of the
current PhD thesis. These publications concentrate on the shape of the audiogram, which seeks to predefine
the configuration of hearing aids from a specific selection of settings through clustering methods. The
popularity of this issue is not by chance; it is due to the direct applicability of these methods in the commercial
market. In contrast, the classification of hearing loss types, which is directly related to a medical diagnostic
problem, has attracted significantly less attention than automated hearing aid configuration.

In this context, Elbasi and Obali [20] provided a comparison of several methodologies for assessing hearing
loss, including the Decision Tree C4.5 (DT-J48), Naive Bayes, and the Neural Network Multilayer Perceptron
(NN) model. The study was performed on a dataset consisting of 200 samples, categorized into four distinct
groups: normal hearing, conductive hearing loss, sensorineural hearing loss, and mixed hearing loss. The
input data was organized as a series of numeric values representing Decibels at constant frequency levels
(750 Hz, 1 kHz, 1.5 kHz, 2 kHz, 3 kHz, 4 kHz, 6 kHz, 8 kHz). The classification algorithms were executed
using Weka software, resulting in an accuracy of 95.5% for the Decision Tree, 86.5% for Naive Bayes, and
93.5% for the NN model.

In a recent investigation, Crowson et al. [21] utilized ResNet models to systematically categorize audiogram
images into three categories of hearing loss: sensorineural, conductive and mixed, along with a classification
for normal hearing. The study made use of a dataset that included 1007 audiograms, which were pre-
processed into static plots with a resolution of 500 x 500 pixels. Instead of executing a complete training
from scratch for the classifier, the authors strategically utilized transfer learning techniques, leveraging well-
established raster classification models. While all assessed architectures were based on convolutional
neural network (CNN) frameworks, the ResNet-101 model particularly excelled, achieving a remarkable
classification accuracy of 97.5%.
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Paper Audiogram Data size Data type Accuracy (%)
classification

problem
Ersin Elbasi and Hearing loss types: 200 Raw audiometry 95.5
Murat Obali [20] normal, data

conductive, mixed

and sensorineural
Crowson et al. 1007 Audiograms (raster 97.5

[21] data)

Table 2. Existing approaches to the classification of hearing loss types.

In summary, the subject of Al-based audiometry data classification has not been thoroughly explored. The
existing solutions have been developed and tested on relatively small datasets, and thus their applicability
tin general medical practice is limited (Table 2). Clinical guidelines indicate that the acceptable margin of
error should ideally be below 5%, aiming for a target closer to 3% [22][23]. Among the classifiers reviewed,
only one satisfies these criteria. Crowson et al. [21] created the most efficient audiogram classifier to date,
employing transfer learning to modify an existing image classification network for the analysis of audiogram
images. Although this approach achieved an impressive classification accuracy of 97%, it possesses
significant limitations. As an image classifier, it cannot be directly utilized on the original data series
produced by tonal audiometry. Consequently, the data must be transformed into audiogram images, which
may result in the loss of critical information. Furthermore, while audiograms typically share a similar
structure, those generated by different hardware and software can exhibit considerable variation. These
discrepancies may encompass differences in background and line colors, as well as the volume of
information displayed (for example, whether the data pertains to one ear or both). Therefore, a universal
classification approach for tonal audiometry cannot depend solely on an image classifier. Moreover, since
the existing studies have been performed on relatively small datasets, this limited sample size may have
resulted in an overly optimistic and potentially unreliable performance evaluations. The small size of the
training dataset also complicates the identification of significant patterns within specific classes, which could
lead to biased validation results when applied to the test dataset.

3.2. Binary classification

This section is a summary of conference paper (P1) entitled ,Development of an Al-based audiogram
classification method for patient referral”.

The main objective of the research (P1) was to develop an Al-driven system designed to classify audiometry
data, aiming to enhance patient referrals within the realm of hearing healthcare. Audiometry tests play a
crucial role in the diagnosis of hearing impairments, but their interpretation necessitates the expertise of
trained audiologists. The number of available audiologists rarely follows the growth dynamics of the patient
population, which results in delays in obtaining diagnoses. This research aimed to tackle this issue by
creating an Al tool capable of automatically categorizing tonal audiometry test results into two distinct
groups: normal hearing and pathological hearing loss (which indicates the existence of hearing impairment).
By implementing this system, the Al could support general practitioners (GPs) and primary care providers
in swiftly and accurately identifying patients who require further assessment by specialists, thereby
expediting the referral process and enhancing the overall delivery of healthcare.

The study used a dataset consisting of 2,400 data series contained numerical information about tonal points,
defined as loudness (dB) for a given frequency (Hz), in XML format.. The dataset included the following
range of frequencies: 125Hz, 250Hz, 375Hz, 500Hz, 750Hz, 1000Hz, 1500Hz, 2000HZz, 3000HZz, 4000Hz,
6000Hz, 8000Hz. These data were collected from various clinical settings and labeled by experienced
audiologists, who classified each audiogram as either indicating normal hearing or hearing loss. The outline
of the research described in the paper P1 is presented in Figure 2.
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Fig. 2. An overview of the aim of paper P1.

Hearing loss

In order to identify the most effective method for classifying the audiometry data, the paper explored various
deep learning architectures. Each model has been assessed using k-fold cross-validation [24], which
consists of dividing the data into k subsets and training the model k-times with k-1 subsets, with a different
subset being used for testing in every iteration. The presented research used k = 5, which resulted in train
to test dataset proportions of 80% to 20%, respectively. The general workflow of the study is shown in Fig. 3.

Pure tone audiometry results

Y
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- 7 5-Fold Cross Validation
'
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Standardization > Test set
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Neural net- ) )
Nork Araining J > Model evaluation

Fig. 3. The systematic approach to processes resulting in model evaluation [2].

In the discussed paper, the following artificial neural network architectures were used:

(a) Multilayer Perceptron (MLP) [25]:

The multilayer perceptron is the most prominent and commonly employed neural network architecture.
It can be used to construct standalone networks as well as segments of considerably more intricate
models, which will be discussed in detail later. The structure of the MLP is delineated by its design,
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which comprises an input layer, one or more hidden layers, and an output layer. The network is
completely connected, indicating that each unit obtains connections from all units in the prior layer. This
implies that each unit has its own bias, and there is a weight associated with every pair of units in two

consecutive layers. Therefore, the calculations for the ['th hidden layers of the network can be
articulated as:

hi(l) =W Z Wi(jl)xj + bi(l) ,
J

() _ (2), (M 2
hP = 0@ > wPh® + 5 |,
7

— (OIGY) O,
J

where the x; are the inputs to the unit and the wi(jl)are the weights, the bi(l) is the bias and 6O is the

nonlinear activation function respected to layer [. Moreover, the y; is the activation of the output unit. It
is important to recognize that each hidden layer may utilize distinct activation functions; nevertheless,
the Rectified Linear Unit (ReLU) is currently the most prevalent activation function employed in hidden
layers:

f(x) = ReLU(x) = max(0, x).

Concerning the output layer (y;), pertaining to the k-class classification problem, the softmax function
determines the output probabilities:

el
Vi =k—hj fOT'i = 1,2,...,k,
j=1€

where k is the number of classes and h; is the output from the last layer before applying softmax. When
the probability y has been established, L the difference between the predicted output and the expected

value is evaluated by the loss function L.. In classification tasks, the latter is realized via cross-entropy
loss:

k
Lcross—entropy = Z yilog((yi) )r
i=1

where ¥, is the predicted probability for class i. For the purpose of optimizing the loss function (L), the
gradient descent optimization algorithm is utilized to determine the AL:

dL
an'

Aw; = —«a

where a is the learning rate. Using the generated loss value, the chain rule is applied to updating
individual weights:
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where o is derivative of loss with respect to weight.

(b) Convolutional Neural Network (CNN) [26]:

A Convolutional Neural Network (CNN) represents a category of artificial neural networks that excels in
processing structured grid data, such as images. A widely adopted form of CNN, resembling the MLP,
is characterized by several convolutional layers that are succeeded by sub-sampling (pooling) layers,
culminating in fully connected layers at the end.

The input X for each convolutional layer is represented as a 3D tensor, encompassing values for height,
width, and depth. The depth, often referred to as the channel number, is three in the case of an RGB

image, and one for a grayscale image. A convolutional layer contains a set of K learnable filters

(kernels) Kwhich process the input image to create feature maps. The label 'feature map' refers to the
representation of the occurrence of certain features in an image, for instance, straight lines, edges, or
distinct objects. The output of a convolutional layer can be articulated as follows:

Z=XxK+b,

where X is the input image, K is the filter (kernel) which performs the convolution operation and b is
the bias term. In addition, after the convolutional operation an activation function is used to introduce
non-linearity (ReLU). Afterward, pooling layers are typically employed, aiming to downsample the
feature maps created by the convolutional layer into a smaller quantity of parameters, consequently
lowering computational complexity and improving management of overfitting. The most widely used
pooling operation is referred to as max pooling, which is defined as:

Pi,j = maxm,nZi+m,j+n'

where m and n define the pooling window size. After the image undergoes the feature-learning
procedure utilizing convolutional and pooling layers, the result from the last pooling layer is converted
into a vector and then directed through one or more fully connected layers (MLP). In classification tasks,
the final output probabilities are obtained by utilizing the softmax function. Analogous to MLP, the
backpropagation process is utilized to enhance the loss function, which is mainly cross-entropy in
classification scenarios. It is essential to underscore that the optimization process relates to both the
weights of the fully connected layers and the filters employed in the convolutional layers, including the
biases in those types of layers.

(c) Recurrent Neural Network (RNN) [27]:

Recurrent Neural Networks (RNN) are a type of neural network architecture mainly used for detecting
patterns in sequential data, including handwriting, genomes, text, or numerical time series that are
commonly generated in industrial environments. Unlike MLP, which transmit information in a
unidirectional manner without cycles, RNNs incorporate cycles that allow them to relay information back
into their own structure. This capability enhances the performance of Feedforward Networks by
integrating previous inputs.

The essential part of an RNN is the recurrent layer, which, unlike feedforward networks that process all
inputs at once, handles one input at a time for each time step. This sequential processing allows the

network to maintain a dynamic that changes over time. At every time step ¢, the RNN takes an input x;

and updates its hidden state h;, relying on the previous hidden state h;_; and the current input.
Mathematically, this update can be defined as:

he = f(Wpheoy + Wex, + b),
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where W)}, is the weight matrix for the hidden state, W, is the weight matrix for the input, b is the bias
vector and f is an activation function (e.g. ReLU). The output at each time step can be computed as:

yt = VVyht'l'by;

where Wy is the weight matrix for the output layer and by is the output bias. Similarly to MLP and CNN,
the RNN loss function quantifies the disparity between the predicted and expected outputs, however
cross-entropy loss also accounts for the total number of time steps T':

T k&
Lpny = —ZZ}’MIOQ Gt

t=1i=1

where k is the number of classes, y(;; is the true label, and §, ;, is the predicted probability for class i
at time step t. The architecture of RNNs incorporates a specialized backpropagation method termed
Backpropagation Through Time (BPTT) [34], which is utilized to optimize the loss function and
subsequently update the weights and biases. This approach involves unrolling the RNN temporally, thus
treating it as a feedforward network for the duration of the sequence. Each timestep of the unrolled
recurrent neural network can be seen as an extra layer due to the order dependency of the issue, with
the internal state from the preceding timestep serving as input for the succeeding timestep.

(d) Gated Recurrent Units (GRU) [28]:

Gated Recurrent Units, as proposed by Cho et al. [28], are a form of RNNs that incorporates gating
mechanisms to facilitate better information flow management and to mitigate the challenges of vanishing
and exploding gradients when learning long-term dependencies. The structure of a GRU merges the
hidden state and cell state into a single state and includes two gates: the update gate and the reset
gate. Thus, the functionality of a GRU realized via the following operations:

* Update Gate: z; = a(W,x; + U hi_1 + b,);

* ResetGate: 1, = o(W,x; + U, h_q + b;);

»  Candidate Activation: h, = tanh (Wyx; + Up(r; O he_1) + bp);
»  Hidden State Update: b, = (1 —2,) © he_q + 2, O hy;

where o is the sigmoid activation function, () denotes element-wise multiplication, W is the weight
matrix for the input states, U is weight matrix for hidden states and b are bias vectors.

Gating mechanisms play a crucial role in preserving significant information across lengthy sequences
with enhanced efficiency. To begin with, by selectively permitting pertinent information to pass through
the gates, GRUs mitigate the risk of gradients vanishing completely. Furthermore, owing to the effective
gating mechanisms, GRUs can frequently be trained more rapidly than conventional RNNs, thereby
enhancing effectiveness and decreasing the number of necessary training iterations.

(e) Long Short-Term Memory (LSTM) [27]:

Long Short-Term Memory (LSTM) introduced by Sepp Hochreiter and Jurgen Schmidhuber [27] is an
advanced form of RNN, similar to GRU, designed specifically to resolve the vanishing gradient problem.
However, LSTM is more widely used than GRU because of its superior performance in tasks that require
long-term memory, particularly in the area of natural language processing. LSTM can be differentiated
from GRU by its more elaborate architecture, which consists of three gates: an input gate, a forget gate,
and an output gate, compared to the two gates present in GRU (update and reset gates). The hidden

state h; and cell state c¢; of LSTM are updated using the following operations:
o Forget Gate: f; = o(Wrx; + Urhi_q + by);
o |nput Gate: it = O-(Wlxt + Uiht—l + bl)’ 61_— = tanh (VVCXt + UCh't—l + bC)’
o Cell State Update: ¢; = f; O ¢c;—q + 1z O C¢;
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o Output Gate: Ot = O-(VVoxt + UOh't—l + bo), h’t = Ot @ tanh (Ct),

where o represents the sigmoid activation function, ( signifies element-wise multiplication, W denotes

the weight matrix associated with the input states, U refers to the weight matrix for hidden states and b
indicates the bias vectors.

The design of all models was analogous in terms of their layers, starting with the input layer, followed by a
specialized network layer (MLP, CNN, RNN, GRU, or LSTM) that included 12 neurons and employed a
ReLU activation function, and subsequently applying Dropout at a rate of 10%. The following layer was
another specialized network, this time made up of 6 neurons and also utilizing a ReLU activation function.
Again, a Dropout layer was applied at a rate of 10% to help mitigate the risk of overfitting. The network
architectures concluded with a dense layer that contained two neurons and a softmax activation function.
The shape of the input layer was consistent across MLP, RNN, GRU, and LSTM, which was (2,12) —
covering information from both conditions (air on bone) across a range of 12 frequencies. Additionally, the
CNN input layer required an extra dimension to accommodate the number of colors, resulting in a shape of
(2,12,1).

Initial investigations evaluated Multilayer Perceptron (MLP), Convolutional (CNN), and Recurrent (RNN)
neural networks, yielding accuracy rates of 94.58%, 95.63%, and 96.04%, respectively. The RNN
architecture demonstrated the highest classification performance, prompting further exploration of RNN-
based architectures, including Gated Recurrent Units (GRU) and Long Short-Term Memory (LSTM). Both
models exhibited comparable accuracy, achieving 97.71% for GRU and 98.12% for LSTM. Furthermore,
the confusion matrices and ROC curve with the AUC parameter were analyzed for each model, revealing
that the LSTM model attained the best scores across all metrics.

In conclusion, this study proposed an Al-driven method for classifying audiograms as either normal or
pathological, aimed at supporting referral decisions in primary care. Using a dataset of 2,400 expert-labeled
pure audiometry data, the authors trained and compared MLP, CNN, and RNN models. The LSTM-based
RNN achieved the highest accuracy (98.12%), which meets the predetermined margin of error standards
and surpasses the 97.5% classification accuracy of the leading algorithm for audiogram data classification,
as proposed by Crowson et al. [21]. It is important to highlight that this study focused solely on binary
classification, whereas Crowson et al. [21] provided a methodology for the complete four-class classification.

3.2.1. Author’s contribution to the state of the art

This section summarizes paper (P1) in the context of author’s contribution to the state of the art in the area
of automated classification of pure tone audiometry data. The paper contributes in the following subjects:

While previous studies have explored aspects of audiogram interpretation, this work delivers a
complete end-to-end binary classification system (normal vs pathological) using machine learning.
This study is among the first to apply RNN architectures (LSTM, GRU) specifically to audiogram
data, treating hearing thresholds across frequencies as sequential patterns.

The paper demonstrates that temporal dependencies in audiometric patterns can be effectively
captured using RNNs, outperforming traditional MLPs.

The research achieves a 98% accuracy rate with LSTM, setting a high benchmark for audiometry
data classification compered to state-of-the-art.

The paper positions the developed Al model as a referral support tool in the clinical workflow, aiming
to support GPs in low-resource settings and accelerate diagnosis.

NS N NN

3.3. Classification of three types of hearing loss

This section provides a summary of the papers (P2, P3) concerning the classification of three types of
hearing loss. Section 3.2.1 outlines the findings from conference paper P2, titled "Detecting Types of
Hearing Loss Using Various Al Classification Methods: A Performance Review," whereas section 3.2.2
presents the results from the extended conference paper published as a journal article entitled "Efficiency
of Artificial Intelligence Methods for Hearing Loss Type Classification: an Evaluation". The research workflow
of the papers P2 and P3 is presented in Figure 4.
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Fig. 4. Research workflow of papers P2 and P3.

3.3.1. Detecting type of hearing loss with different Al classification methods

The paper P2 presents a comprehensive examination of the ways in which artificial intelligence (Al),
especially machine learning and deep learning methodologies, can be employed to categorize various types
of hearing loss (mixed hearing loss, conductive hearing loss and sensorineural hearing loss) using raw pure
tone audiometry data. The impetus for this study arises from the increasing need for rapid, precise, and
economical diagnostic instruments that can assist audiologists in more effectively recognizing hearing
deficiencies.

In the initial phase, the listed below machine learning classification algorithms were evaluated.

(a) Gaussian Naive Bayes [29]:

The foundation of the Gaussian Naive Bayes is Bayes' theorem, which can be expressed as

PX|C)-P(C
P =20

Where P(C|X) is the probability of class C given the feature vector X, P(X|C) is the probability
of observing features X given class C, P(C) is the prior probability of class C, P(X) is the total
probability of observing features X.

In the Naive Bayes classifier, it is presumed that the features are independent.
P(X|C) = P(x1, %3, ., Xp|C) = P(x1|C) - P(x2|C) - P(x5,|C),
where X1, X5, ..., X, are the individual features of the vector X.

Also, we operate under the assumption that the features conform to a normal distribution. The
likelihood of feature x; belonging to class C can be represented by the probability density function
of the normal distribution:

2
—(xi-m)
e 202

P(x;|C) =

1
V2ma? ’

where pis the mean of the feature in class C and a2 is the variance of the feature in class C.
To classify a new feature vector X, the probability for each class Cj, is computed.

P(Ci|X) < P(Cy) - P(X|Cy),
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Pixicy = | | Pealco.

In the end, the class C}, with the highest likelihood is selected as the final candidate:

P

C = argmaxc, P(Cy|X).

(b) K-Nearest Neighbors (KNN) [30]:

The k-NN algorithm categorizes a new instance by considering the predominant class among its
kclosest neighbors within the feature space. Steps of the k-NN Algorithm:

e Determine the number of nearest neighbors k, that should be considered for the purpose
of classification.

e To determine the distance for a particular test instance X, assess the distance between x
and all training instances X;, employing techniques like Euclidean Distance (d (x, x;)).

d(x,x;) = \/Z}”:l(xj - xij)z’

where m is the number of features, and X;; is the j-th feature of the i-th training instance.

e Sort the distances d(x,x;) and select the k training instances with the smallest
distances donated as X(1), X(2), -+ » X(k)-

e Determine the class labels of the k nearest neighbors. The predicted class label C(x)
for the test instance x is given by:

k
C(x) = argmax, (Z I(C(xw) =C )>»

i=1
where [ is the indicator function that equals 1 if the condition is true and 0 otherwise.

(c) Logistic Regression [31]:

Logistic regression delineates the relationship between a binary dependent variable and one or
more independent variables by means of the logistic function. The model's output is a probability
value that ranges from 0 to 1, which can be understood as the probability of the input belonging to
a certain class.

The primary step in logistic regression is to determine a linear combination of the input features. For
a given input vector x = [xl, Xgy vy xn], the linear combination can be expressed as:

z = Bo + Prxy + Baxa + 4 Buxn = BTx,

where [3, is the intercept (bias term), B4, B, ..., B, are the coefficients (weights) for each feature
and B is the vector of coefficients.

Subsequently, the result of the linear combination Z is transmitted through the logistic (sigmoid)
function to generate a probability:

P(Y = 11x) = 0(0) = ==,
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where P(Y = 1V x) is the probability that the output Y is 1 given the input x o(z) is the logistic
function.

In order to reach a classification decision, a threshold T (typically set at 0.5) is utilized on the
predicted probability.

1, PY=1|x) =T
0, otherwise

Cx) ={

To effectively train the logistic regression model, optimizing the coefficients 8 is necessary. The cost
function utilized is the log loss (cross-entropy loss), which assesses the difference between the
predicted probabilities and the true class labels:

1y . . .
J®) =—> [yPlog (P(Y = 11x®) + (1 = yD)log (1 - P(Y = 1xD))],

i=1

where m is the number of training examples, y(i) is the actual label for the i-th example and x@ s
the i-th training example.

Support Vector Machines (SVMs) [32]:

The essential idea of Support Vector Machines (SVMs) is to discover a hyperplane that most
effectively separates the data points of various classes in the feature space. The hyperplane is
selected to ensure that the margin is as large as possible. The margin is defined as the space
between the hyperplane and the nearest data points from either class, which are referred to as
support vectors.

When addressing a binary classification problem, consider a dataset that contains n training
examples, with each example depicted as a feature vector x; and a corresponding label y; (where
y; € {—1,1}). The aim is to determine a hyperplane defined by the equation:

wlix+b =0,

where w is the weight vector (normal to the hyperplane) and bis the bias term. The decision function
for classifying a new instance x is given by:

C(x) = sgn(wTx + b),

—-1,x<0
sgn=40,x=0
1, x>0

In order to optimize the margin, it is essential to accurately classify the data points and maximize
the distance from the hyperplane to the closest points, known as support vectors. The margin y can
be defined as:

_ 2
VEwlr

In order to identify the optimal hyperplane, it is essential to minimize the norm of the weight vector
||w||while ensuring that all training examples are accurately classified:

\/yi W x; +b) = 1.
i
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(e)

(f)

To address the aforementioned quadratic programming issue involving inequality constraints, the
method of Lagrange multipliers can be employed. Consequently, the Lagrange function is defined
as follows:

n

1
L(w,b,a) = EWZ + z a;(yi(w"x; +b) — 1),

i=1
where a; are the Lagrange multipliers.

Stochastic Gradient Descent (SGD) [33]:

The objective of the SGD classifier is to reduce a loss function L(w), which evaluates the model's
effectiveness in classifying the data. For a given dataset {(x;, y;)}i=,, where x; is the feature
vector and y;is the class label, the loss function can be defined as:

n

1
L) =2 (3 fGxw)),

=1
where / is the loss function and f (x;; w) is the model function with parameters w.
In the next step the gradient of the loss function L(w) with respect to the parameters w is computed:

iy =242

Within the framework of the SGD algorithm, the modification of the parameters w occurs based on
an individual example as demonstrated here:

w —w —nVl(y, f(xi; w)),
where 1 is the learning rate and VI(y;, f (x;; w)) is the gradient of the loss function.
The algorithm carries out the aforementioned procedures for all examples in the dataset over a
series of epochs. In each epoch, the examples are shuffled in a random manner, which introduces

randomness into the update process and helps to prevent local minima.

Decision Tree [34]:

The Decision Tree classification algorithm creates a model that resembles a tree structure, where
every internal node signifies a decision based on a specific feature, each branch illustrates the
outcome of that decision, and each leaf node corresponds to a class label. For a given dataset

D = {(x;, ¥},

where each instance is represented by a feature vector x and a corresponding class label y. The
main aim of the Decision Tree algorithm is to divide the dataset D into subsets that are as uniform

as possible in relation to the target class. The frequently used criteria for evaluating the impurity of
a node is entropy. The entropy of a dataset D is given by:

Entropy(D) = —

C
pilog, (p;).

i=1
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Subsequently, the Information Gain is calculated, which quantifies the decrease in entropy or
impurity following the division of a dataset based on a feature. This metric aids in identifying the
optimal feature for splitting at each node. The formula for Information Gain is:

vl

IG(D,A) = Entropy(D) — D]

veValues(A)

Entropy(D,),

where IG (D, A) is the information gain of dataset D when splitting on attribute A, Values(A) are
the possible values of attribute A, D,, is the subset of D for which attribute A has value v, D V is
the total number of instances in dataset D and D,, V is the number of instances in subset D,,.

The Decision Tree algorithm chooses the feature that provides the highest information gain for

splitting the dataset. This recursive process is carried out for each subset until a stopping criterion
is reached (for example maximum depth of the tree).

(g) Random Forest [35]:

The Random Forest classifier can be regarded as an advanced or ensemble variant of the Decision
Tree algorithm. Whereas a solitary Decision Tree generates predictions through a sequence of data
splits, the Random Forest constructs numerous Decision Trees and amalgamates their results to
enhance overall efficacy. This technique is called bootstrapping, which produce various subsets of

the training data. For each tree t in the forest, a bootstrap sample D; is generated by randomly
drawing n instances from D with replacement;

Dy = {(xi, ¥i, ) (%150 Vi )s s (Kio ¥i) b

where ij are randomly selected indices from the original dataset D. In constructing each decision tree,

a random subset of features is chosen for each split. Let m denote the total number of features, and a
subset of m' features is selected, with m’ being less than m. The number of features considered at each
split is a hyperparameter indicated as m'. For each individual tree t, the algorithm develops a decision
tree T; through the use of the bootstrap sample D; and the selected features. The criterion for splitting

can be founded on entropy. Once all trees T; are built, predictions for a new instance x are made by
aggregating the predictions from all trees:

C = mode(Ty(x), Ty (x), ..., Tr(x)),

where T is the total number of trees in the forest. The mode is calculated by determining which class
label appears most frequently among the predictions from all the trees.

The second phase of the research focused on assessing the following Artificial Neural Network (ANN)
architectures: Feedforward Neural Network (FNN/MLP), Convolutional Neural Network (CNN) Recurrent
Neural Network (RNN). Furthermore, an analysis was conducted to evaluate the performance of the Graph
Neural Network (GNN) [36] on audiometry data. GNNs represent a category of neural networks specifically

engineered to function on graph data, necessitating the transformation of input data into a graph G =
(V,E), where V is the set of nodes (vertices) and E is the set of edges connecting the node. Each node
v; € V can have an associated feature vectorx; € R% where d is the dimensionality of the feature space.
The essential function in GNNs is the message passing mechanism, consisting of two key phases: message
aggregation (nodes gather and integrate messages from adjacent nodes) and node update (nodes modify
their representations utilizing the aggregated messages). Typically, the message passing procedure is
reiterated T times according to the following methodology:
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Firstly, for each node v;, messages are relayed from its neighbors N (i). The message from neighbor
v; directed to v; can be articulated as follows:

mgj) Message( (t) (t) eU)

where m() denotes the message transmitted from node v; to node v; during iteration ¢, and

Message is a function (e.g. element-wise sum, mean or max) that processes the message based on
the characteristics of the nodes and the edge. Thus, for node v; the message is computed as:

m® = Z m®.

JEN(D)

On the basis of these aggregated messages, the GNN layer updates the features of source node i. At
the conclusion of this update process, the node ought to be aware of both its own characteristics and
those of its neighbouring nodes. This is achieved by integrating the feature vector of node i with the

aggregated messages. Thus, the update function U can be defined as:

K ED _ U(x'(t),m(t))’

1 2 2

The outputs can serve multiple downstream purposes, such as classifying nodes or graphs and
predicting edges.

The models were developed utilizing a dataset of 4007 rows of audiometry data, which was categorized by
experienced audiologists. The input data series comprised of vertical information regarding tonal points of
both air and bone conduction, represented as volume (dB) for specific frequencies (Hz), sourced from XML
files. The frequency spectrum of the dataset encompassed 250Hz, 500Hz, 1000Hz, 2000Hz, and 4000Hz.

Given that GNN necessitates graph input, the audiometry data was converted into a directed graph
comprising 10 nodes and 18 edges. Frequency and loudness values were allocated to the nodes and the
classification of hearing loss types in GNN was done in graph-level. Figure 5 illustrates a visual
representation of the graph.
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Figure 5. The GNN architecture's input graph structure [3].

The architectures of the developed artificial neural networks followed the general structure outlined in paper
P1 (section 3.2), with the main difference being the shape of the input layer. The latter was structured as (5,
2), since this research examined the five primary frequencies (250, 500, 1000, 2000 and 4000 Hz) for both
conductions.

All tested methods have been implemented in Python 3.10 in Jupyter Notebook environment. The
implementations of machine learning classification algorithms have been imported from the scikit-learn

27



module [37]. The neural networks have been implemented in Keras/Tensorflow [38]. Due to the vast number
of algorithms and neural network architectures examined, computational resources from the Centre of
Informatics - Tricity Academic Supercomputer & Network (Cl TASK) were employed to train the models.

In the realm of machine learning algorithms, the Support Vector Machine classifier has demonstrated the
most impressive results, achieving an accuracy of 83.38%. This algorithm also excelled in metrics such as
precision, recall, F1 score and AUC. Following closely behind, the Logistic Regression and Random Forest
models also surpassed the 80% accuracy threshold. Among the artificial neural network models evaluated,
the RNN emerged as the top performer, attaining an accuracy of 94.46% and a F1 score of 94.45%, excelling
in precision, recall, and AUC as well. The CNN model ranked second, with an accuracy of approximately
93.46%, which may come as a surprise since CNNs are typically utilized for image analysis. This
phenomenon was attributed to the fact that CNNs excel at extracting data and patterns from matrices, and
a single audiometry test result could be interpreted as a small (5x2) matrix. The FFN model generally
secured third place with an accuracy of 89.67%, while the GNN model recorded the lowest scores at
83.15%.

In conclusion, the study presented in paper P2 sought to evaluate various Al-driven algorithms for the
classification of discrete tonal audiometry data series into three categories of hearing loss: sensorineural,
conductive, and mixed. The Recurrent Neural Network achieved the highest classification accuracy,
reaching 94.46%. Although multiple Al models demonstrated encouraging outcomes, no single approach
consistently surpassed the others across all situations. Consequently, additional efforts were required to
focus on enlarging the dataset and enhancing RNN models with respect to accuracy.

3.3.2. Efficiency of Artificial Intelligence Methods for Hearing Loss Type
Classification

The article P3 serves as an extension of the conference paper P2. This study has been broadened to

incorporate several new Al models and to deliver a more comprehensive evaluation of the employed deep

learning algorithms, which includes an analysis of the influence of different data preprocessing techniques

on the classification of hearing loss types. Additionally, the extended paper addresses the implications of
augmenting the training dataset through the application of a generative adversarial network (GAN) [51]. The

GAN consists of two neural networks, a generator GG and a discriminator D, that are trained simultaneously
through adversarial training. The GAN could be formally defined as:

Let X be the data distribution from which samples are to be generated. The goal of the GAN is to
learn a mapping from a latent space Z to the data space X.

Generator G is a function that maps a random noise vector z € Z to a data sample x € X:
x =G(z0;),
where 8 are the parameters of the generator.

Discriminator D is a function that takes a data sample x and outputs a probability D (x; 8p) that
indicates whether the sample is real (from the data distribution) or fake (generated by G):

D(x;60p) = P(D = 1|x),
where @) are the parameters of the discriminator.

The training process of GANs can be conceptualized as a two-player minimax game, in which the
generator seeks to reduce the likelihood of the discriminator accurately identifying generated
samples, whereas the discriminator strives to enhance its classification precision. The objective
function can be articulated as:

mingmaxpV (D, G) = Eyp,...[logD (x)] + Egp, [log (1 — D(G(z)))],
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where py,., is the real data distribution, p, is the distribution of the latent variable z, E,,,, . [logD (x)]
is expected value of the logarithm of the probability that real samples x are classified as real by the

discriminator D and E,,, [log (1 - D(G(z)))] is expected value of the logarithm of the probability
that samples generated by G are classified as fake by the discriminator D.

The presented research utilized a conditional generative adversarial network (CGAN) [39], which represents
a modification of the GAN framework that includes labels as extra data during the training stage.
Consequently, this method resulted in an increase of the size of the dataset by a factor of two.

In a manner akin to P2, artificial intelligence and machine learning models have been applied to automatic
classification of hearing loss types—conductive, sensorineural, or mixed—using pure-tone audiometry data
based on 4,007 audiometry samples, each labeled by professional audiologists. Furthermore, a more
comprehensive assessment was conducted focusing on advanced RNN models, specifically the Gated
Recurrent Unit (GRU) and Long Short-Term Memory (LSTM). Additionally, the research examined the
effects of standard data preprocessing methods, including the normalization and scaling of audiometric
features, on the ultimate accuracy value. The evaluation encompassed standardization techniques such as
Z-Score (1), MinMax (2), and MaxAbs Scaler (3):

X—U
Zscore = ? (1),
X —min
Zminmax = —————(2),
X
Zmaxabs = |max| (3):

where x is the raw score, p is the mean, o is the standard deviation, min is the minimum value of the

feature and max is the maximum value of the feature. Furthermore, additional tests have been conducted
after expanding the training dataset by means of a conditional generative adversarial network.

The efficacy of all evaluated models was measured using 10-fold cross-validation. Additionally, during the
model evaluation process, the standard 10-fold set was reduced to 90%, leaving 10% to constitute a
representative test dataset. Moreover, the separation into training and testing sets was conducted in a way
that preserved the class proportions present in the complete dataset. This adjustment was made to facilitate
a meaningful comparison of the performance between models trained with and without data generated by
the CGAN.

In terms of machine learning methods, the application of CGAN yielded positive outcomes for only 5 out of
the 7 algorithms that were examined in the dedicated test dataset. The generation of additional training data
resulted in increasing the classification accuracy level in SVMs and logistic regression by approximately 5%.
The largest increase, amounting to 8%, is shown in the SGD results as compared to those without CGAN.
Table 3 provides a comprehensive overview of the results from this comparison.

The paper also discusses the influence of normalization strategies on the performance of classification tasks
utilizing deep learning models. Clearly, the Z-Score normalization technique (1) exhibited exceptional
performance across all evaluated architectures. The classification accuracy achieved with this method is,
on average, 35% superior to that obtained with MinMaxScaler (2) and approximately 120% greater than the
results yielded by MaxAbsScaler (3).

29



Algorithms

Default training (acc)

Training with CGAN (acc)

Gaussian Naive Bayes 63.09% 63.59% 1
K-Nearest Neighbors 80. 29% 79.05% 8
Logistic Regression 89.77% 92.51% 1t
Support Vector Machines 90.27% 93.04% 1
Stochastic Gradient Descent 79.55% 85.53% 1
Decision Trees 84.53% 83.29% §
Random Forest 87.78% 88.02% 1

Table 3. An analysis of the performance of machine learning models, both with and without the application
of CGAN, evaluated on a specific test dataset [5].

Models Default training (acc) Training with CGAN (acc)
FNN 95.48% 91.66% 3§
CNN 92.01% 88.19% §
RNN 93.40% 94.44% 1
LSTM 94.79% 97.56% 1
GRU 92.70% 92.70% <

Table 4. The performance comparison of deep learning models, trained with CGAN versus those without,
as analyzed on a designated test dataset [5].

In terms of deep learning architectures, training on the expanded dataset has significantly increased the
performance of certain deep learning models while impacting the performance of others. In particular, the
classification accuracy of recurrent networks has increased by nearly 1% in the case of RNN, around 1.5%
for GRU and nearly 3% for LSTM. On the other hand, the classification effectiveness of FNN and CNN has
reduced by nearly 3%. Table 4 presents a detailed summary of the findings from the comparison of deep
learning models, both with and without the use of CGAN. In conclusion, the most favorable outcomes were
achieved using the Long Short-Term Memory model, which reached a peak classification accuracy of
97.56% through Z-Score normalization and CGAN data augmentation, which is similar results to state-of-
the art of 97% [21]. Overall, all deep learning models demonstrated significantly superior classification

performance compared to traditional machine learning algorithms.
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3.3.3. Author’s contribution to the state of the art

The papers (P2-P3) contribute in the following subjects:

v" A systematic comparison of both traditional machine learning (e.g., Random Forest, SVM) and deep
learning methods (CNN, RNN, LSTM, etc.) for the specific task of hearing loss type classification
has been performed.

v" Application of a Generative Adversarial Network (GAN) for augmentation in audiology data
classification. This has shown to mitigate the common problem of small dataset sizes in medical Al,
improving the generalization and robustness of deep learning models.

v The importance of selecting an appropriate method of data standardization has been investigated,
revealing that Z-score standardization provides best results for audiometric data.

The proposed LSTM model demonstrated a classification accuracy of 97.56%, aligning closely with
the current state-of-the-art performance of 97%.

v The study demonstrates that Al models, particularly LSTM, can reliably assist or even automate the
classification of hearing loss types, offering time-saving and accuracy benefits in clinical
environments.

3.4. Full classification of hearing loss type

This section is a summary of journal article (P4) entitled ,Automated hearing loss type classification based
on pure tone audiometry data”.

The article P4 details a deep learning approach that incorporates a Bi-LSTM model to classify hearing loss
types - normal, conductive, sensorineural, and mixed - automatically, based on raw pure-tone audiometry
data, with the purpose of aiding clinicians and general practitioners in diagnosis. The main workflow of the
paper (P4) is presented in Figure 6.

Mormal Hearing

Sensorineural
Hearing Loss

Raw audiometry data . i
in XML H Classification

Conductive Hearing
Loss

Mixed Hearing Loss

Fig 6. An overview of the workflow of paper P4.

The paper proposes a new data classifier model based on the Bi-LSTM architecture, which is a variant of
Bi-RNN that utilizes two basic LSTMs to analyze input time series in both forward and backward orientations.
The input layer, which has a shape of (7,2) — 7 timesteps of frequencies in both conductions - is followed by
a Bi-LSTM layer with 7 neurons and a dropout layer, which helps prevent overfitting. The dropout layer is
followed by a single LSTM layer with 4 neurons and another dropout layer. The final layer is a Dense one,
which converts the input 492 parameters to one of four classification categories using the softmax function.
An overview of the proposed architecture is shown in Figure 7.
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The model has been trained on a total of 15,046 audiometry test results from 9,663 adult patients. The data
for each individual measurement (one ear of one patient) comprised seven lists that represented air and
bone conduction, with hearing levels quantified in decibels across frequencies of 125 Hz, 250 Hz, 500 Hz,
1000 Hz, 2000 Hz, 4000 Hz, and 8000 Hz, respectively. Three qualified audiologists classified the
morphologies of hearing loss based on the audiometry test results, categorizing the data into four distinct
classes: normal hearing, conductive hearing loss, mixed hearing loss and sensorineural hearing loss, in
accordance with the methodology outlined in the paper. This resulted in 2584 (17.17%) normal samples,
657 (4.37%) samples of conductive hearing loss, 4028 (26.71%) samples of mixed hearing loss, and 7777
(51.69%) samples of sensorineural hearing loss.

Based on previous results in regard of audiometry data (P3), Z-score normalization has been applied to the
training data and a system of class weight has been introduced to prevent unintended outcomes from
occurring when processing unbalanced data.

In order to address the aforementioned class imbalance, the study employs stratified 10-fold cross
validation. This method is an enhancement of standard 10-fold cross validation, tailored specifically for

classification challenges where the proportion of target classes remains consistent across each fold as it
does throughout the entire dataset.

Input data

Y
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Fig 7. An overview of the proposed Bi-LSTM architecture [6].
The findings obtained from the stratified 10-fold cross-validation reveal that the proposed Bi-LSTM model

successfully classified normal hearing, sensorineural hearing loss, conductive hearing loss and mixed
hearing loss, achieving an average accuracy of 99.33%. The accuracy varied between 99.00 and 99.73 with
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a standard deviation of 0.23%, demonstrating stability. Metrics such as precision, recall, and F1 score
exhibited comparable trends in relation to accuracy. The proposed Bi-LSTM model significantly surpassed
the current leading method in raw audiometry data classification, which is the C4.5 Decision Tree (DT-J48)
method introduced by Elbasi and Obali [20]. The application of the C4.5 classifier to the presented dataset
yielded an accuracy level consistent with that reported in the original study, with a mean accuracy of 95.64%
and a standard deviation of 0.69%. In the broader context of the audiogram classification problem, the
overall accuracy of the proposed model (99.33%) exceeds that of the most effective existing method for
hearing loss classification (97.5%), as presented by Crowson et al. [21] for raster data. While the numerical
difference may not be substantial (99.33% compared to 97.5%), the results were derived from a
considerably more representative dataset (15,046 in the paper versus 1007 samples in Crowson et al [21]).

In conclusion, this paper introduces a Bi-LSTM-based model designed to classify raw audiometry data into
categories of normal hearing and three distinct types of hearing loss. This innovative solution enhances the
classification of hearing loss types, surpassing the existing state-of-the-art methodologies. The findings
indicate that the proposed neural network-based classifier for audiometry data holds potential for application
in clinical settings, serving either as a classification tool for general practitioners or as a support system for
professional audiologists.

3.4.1. Author’s contribution to the state of the art

v’ The proposed model has achieved a classification accuracy of 99.33%, which surpasses the current
state-of-the-art in raw audiometry data classification, as reported by Elbasi and Obali [20], who
achieved an accuracy of 95.5%.

v’ The proposed solution has also demonstrated superior performance compared to the existing state-
of-the-art in raster audiogram classification, as presented by Crowson et al. [21], which attained an
accuracy of 97.5%.

This study was conducted on the largest and most varied tonal audiometry dataset to date, thus
ensuring that the obtained classification results are representative of real-world performance..

In contrast to previous methods that depend on audiogram images (Crowson et al. [21]), the
proposed model utilizes raw air and bone conduction thresholds, enhancing interpretability,
eliminating variability from different chart formats, and facilitating direct integration into audiometry
equipment or hospital systems.

v The model introduces a bidirectional LSTM specifically designed to process the frequency-ordered
characteristics of audiometric data, effectively capturing both local and long-range threshold
patterns.

v’ The proposed approach grants professional audiologists the ability to utilize an Al decision support
system, which may help decrease their workload, improve diagnostic accuracy, and lower the
likelihood of human error.

3.5. Summary of pure-tone audiometry classification models

This section provides a summary of all Al-driven models utilized for the classification of audiometric data as
detailed in articles P1-P4. In total, 15 distinct machine learning and deep learning models have undergone
testing. Ultimately, these tests culminated in the creation of the 4-class Bi-LSTM model outlined in P4, which
is designed for the classification of hearing loss types, including normal hearing.

K-fold cross-validation served as the primary method for assessing classification models. The evaluation
metrics taken into account included: accuracy, precision, recall, F1 score, ROC curve with AUC score and
confusion matrices.

The nature of the error derived from the error matrix was also considered in the assessment of the models.
Given that the objective of the study was to implement the findings in a medical context, the main emphasis
was on eradicating the error that could lead to a patient receiving unsuitable medical treatment due to an
incorrect classifier outcome. In the context of the audiometric test evaluation issue, this pertains to a situation
where a patient with any form of hearing impairment is misclassified by the model as having normal hearing.

Table 5 presents the details of all proposed models in P1-P4 regarding classification of pure tone audiometry
data in the context of the state-of-the-art.
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Model Authors Data type Dataset size Classification Accuracy Results
problem Published
C4.5 Elbasi and Raw 200 Hearing types: 95.5% [20]
(decision Obali audiometry normal,
tree) data conductive,
mixed and
sensorineural
ResNet-101 Crowson et Audiograms 1007 Hearing types: 97.5% [21]
(CNN) al. (raster data) normal,
conductive,
mixed and
sensorineural
LSTM Kassjanski et Raw 2400 Normal and 98% P1
al. audiometry hearing loss
data
RNN Kassjanski et Raw 4007 Hearing loss 94.46% P2
al. audiometry types:
data conductive,
mixed and
sensorineural
LSTM Kassjanski et Raw 4007 Hearing loss 97.56% P3
al. audiometry types:
data conductive,
mixed and
sensorineural
Bi-LSTM Kassjanski Raw 15046 Hearing 99.33% P4
et al. audiometry types: normal,
data conductive,
mixed and

sensorineural

Table 5: Summary of all proposed models considered in the (P1) — (P4) papers with state of the art

comparison.
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4. Processing of tonal audiometry data on mobile devices

This chapter is a summary of journal article (P5) entitled ,Development and testing of an open source mobile
application for audiometry test result analysis and diagnosis support”.

The article presents a novel open-source Android application designed to aid clinicians in the analysis of
audiograms and the diagnosis of hearing loss. Pure-tone audiometry, recognized as the clinical benchmark
for assessing hearing, is represented through audiograms that necessitate expert interpretation to determine
the type and severity of hearing loss. To enhance this process, an application that enables users to capture
and analyse an image of a printed audiogram using a smartphone camera has been created. The workflow
of the study (P5) is illustrated in Figure 8.

Mormal Hearing

Sensorineural
Hearing Loss

i Classification of
Sqannlng th'.a Digitalization of the hearing loss type
audiogram using i i i
smariphone audiogram using the Bi-LSTM
model

Conductive Hearing
Loss

Mixed Hearing Loss

Fig 8. A summary of the research workflow of paper P5.

The processing and classification of pure-tone audiometry test results on mobile devices required their prior
digitization and transformation from audiogram form. In this context, section 4.1 describes the state-of-the-
art in audiogram data digitalization, while section 4.2 presents the process of developing the mobile
application.

4.1. State-of-the-art in audiogram digitalization

The evaluation of tonal audiometry test outcomes is most precise when performed on raw audiometry data,
thereby circumventing issues associated with the analysis of audiograms produced by various software.
Furthermore, it mitigates potential errors that may occur during the generation and printing processes.
Nevertheless, some clinical settings (such as a general practitioner's office) are limited to the printed results
of the test, which limits the usability and efficiency of contemporary automated audiogram analysis models.
In such cases, it is necessary to transition printed audiograms into a digital format. Currently, the literature
that discusses this specific issue is confined to the publications listed below.

The initial research was performed by Li et al. [40], who designed various convolutional neural networks to
extract audiograms, symbols, and axis labels from audiogram images. The synthesis of results from all
models results in a digital representation of the audiogram. The system showed 98% accuracy on scanned
images, while it reached 84% accuracy on images captured with a camera.

Following this, Chairh and Green [41] introduced a novel digitalization tool that employs YOLOV5 for the
recognition of symbols and Tesseract for the identification of labels. The dataset included 3,200 reports, in
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comparison to the 420 reports analyzed by Li et al. [40]. This study took into consideration all audiological
symbols, including those obscured from air and bone conduction. The audiogram, axis label, and symbol
models achieved mAP@0.5 scores of 84%, 34%, and 39%, respectively.

The most recent work was performed by Yang et al. [42], who presented a system similar to that of Chairh
and Green [41], which includes a multi-stage integration of YOLOv5 models paired with an optical character
recognition (OCR) model. The analysis focused on both pure tone audiometry and sound field testing. The
accuracy rate at each stage was about 98%, based on 2,535 samples for audiogram detection and 2214
records for symbol detection.

In summary, the audiogram digitalization process can be outlined through two principal methodologies: the
utilization of convolutional neural networks and the incorporation of YOLO together with OCR models.
Recent innovations in this sector, as highlighted by Yang et al. [42], leverage the latter technique, achieving
an accuracy rate close to 98%. The heightened accuracy illustrates the effectiveness of integrating YOLO
and OCR technologies to enhance digitalization efforts, particularly in applications that require meticulous
object detection and text recognition. This being said, none of these solutions were crafted with mobile
device implementation in mind. It is vital to understand that mobile devices generally have reduced
processing power compared to desktop or server environments. This difference can lead to longer inference
times and may limit the complexity of the models, particularly sophisticated CNN models as indicated by Li
et al. [40]. Moreover, mobile devices are limited by their RAM and storage capacity, which is a problem
particularly in terms of Large CNN-based models which demand considerable amounts of memory. To
deploy CNNs on mobile devices effectively, it is necessary to optimize models through techniques such as
quantization, pruning, or the use of lightweight architectures such as MobileNet [43]. This optimization can
be complex and may require specialized knowledge. As a result, the models proposed by Chairh and Green
[41] and Yang et al. [42] are not suitable for direct implementation on mobile devices, as they utilize
demanding YOLO and OCR architectures.

4.2. Mobile application for audiometry test result analysis

The methodology employed for the processing and classification of pure-tone audiometry test results on
mobile devices was delineated into three distinct stages: scanning, digitization and classification of
audiograms.

The scanning process was realized using the ML Document Scanner from Google’s ML Kit, enabling the
user to position their smartphone camera over the document for automated capture with perspective
correction. Afterwards, the YOLOv5 object detection model has been applied to identify and extract the
audiogram region from hearing test results report.

The procedure for digitizing an audiogram consists of three fundamental stages: line detection, symbol
detection, and label detection.

The process of detecting lines on the audiogram was carried out through the Probabilistic Hough Transform
approach [44], which is a modification of the classic Hough Transform. Before the application of the Hough
method, the Canny Edge detection method [45] was implemented to derive an edge map from the images.
The Canny edge detection algorithm includes five essential steps:

1. Noise Reduction. The input image is smoothed using a Gaussian filter to reduce noise and
unwanted details.

Let I (x, y)be the inputimage, and G (x, y) be the Gaussian filter. The smoothed image is obtained
by convolving I (x, y) with G (x, y):

I'(x,y) =I1(x,y) * G(x,y),

where Gaussian filter G (x, y) is defined by the following formula:

) —x2_y2

202

G(x,y) =

2ma?
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where o is the standard deviation of the Gaussian distribution.

2. Gradient Calculation. The gradient magnitude (M (x, y)) and direction (6 (x, y)) are computed
using the Sobel operator [46]:

or . _or
ax' Y oy

M(x,y) = ’G,? + G,

0(x,y) = tan™! (g—’;)

Gy =

3. Non-Maximum Suppression. The gradient magnitude is subjected to thresholding to suppress
non-maximum values (T3 ), which results in a binary image featuring edge candidates.

! _ M(X,Y), M(x'y)ZTl
M'(x,y) = {0, otherwise

4. Double Thresholding. Two thresholds (T; and T,) are utilized on the edge candidates to classify
them as strong (1) or weak edges (0).

1, M (x,y) =T,
FEen={,
0, M'(x,y) <Ty
5. Edge connection. The contour of the image's edge is associated with the strong edge as a
reference. Upon connecting to the image edge's endpoint, a search is conducted for the edge point
that can be continued in the weak edge, thereby obtaining the full edge information of the image.
Based on obtained edge points from Canny method, the Hough Transform method was used for

line extraction. In the Hough Transform, a line in the Cartesian coordinate system can be
represented in polar coordinates as:

r = xcos(0) + ysin(0),
where r denotes the perpendicular distance from the origin to the line, and 6 represents the angle
formed between the x-axis and the line that is perpendicular to the line being depicted. For every

edge point (x;, ¥;) in the binary image derived from the Canny method, the associated values of r
for a spectrum of angles 8 are calculated:

r; = x;c05(0) + y;sin(6).

This indicates that for every edge point, a sinusoidal curve is produced in the Hough space, with
each 0 representing a distinct line that may intersect the point (x;, ;).

Utilizing an accumulator array A(7r, 8), the Hough Transform counts the number of points that
correspond to each (7, @) pair. The accumulator is initialized to zero:

MA(r,H) —0.
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For every edge point (x;,y;), the value 7; is calculated for a range of angles 6, and for each
calculated pair (rl-, 9), the accumulator is increased by 1:

A(r;,0) « A(ry,0) + 1.

After all edge points have been processed, the accumulator array will display peaks at sites where
multiple points in the image relate to the same line in Hough space. To ascertain these peaks, a

threshold T is applied:
If A(r,0) > T, then(r, 0) is a detected line.
The parameters (r,0) associated with the identified lines can be transformed back into the Cartesian

coordinates corresponding to the lines in the initial image. The line can be represented in the slope-
intercept format as:

_ —sin(0) r
~ cos(6) X+ sin(0)

To enhance computational efficiency and maintain stable performance, an advanced variant of the
traditional Hough Transform known as the Probabilistic Hough Transform has been applied. This method,

rather than utilizing all edge points (x;, ¥;), randomly selects a subset of these points. Furthermore, the
algorithm guarantees that the chosen points are adequately dispersed to accurately depict the overall edge
structure. The Probabilistic Hough Transform is especially advantageous for real-time applications and
minimizes computational complexity, which are a critical factor for mobile devices.

Moreover, the paper proposes a method that calculates the position of any undetected lines by leveraging
the spatial coordinates of the two closest detected lines. In the simplest case, when there exist two parallel

lines y; = mx + b; and y, = mx + b, an interpolated line Yp that is exactly between these two lines
can be expressed as:

b, + b,

=mx +
In more complex scenarios, when it is necessary to determine the equation of a line derived from two lines
that are spaced further apart, the sole distinction will involve calculating the y-intercept (b) while considering
the number of steps (assuming the lines are to maintain equal distance from one another).

In the realm of symbol detection, the architecture of YOLOv5s was employed to accurately identify symbols
on audiograms. A total of 8 distinct classes were established, each corresponding to various audiological
symbols, including those from air and bone conduction from both ears, along with a masked version of the
symbols. For label detection, Optical Character Recognition (OCR) technology was utilized, particularly the
Machine Learning Kit Text Recognition v2 API developed by Google, alongside the fine-tuned YOLOv5s
model. Fine-tuning refers to the act of altering a pre-trained model to make it suitable for a new, related task,
which in this instance involved the detection of labels in audiograms. For this purpose, the first 10 layers of
the original YOLOvV5 model (trained on the COCO dataset) were frozen, while the rest have been retrained
on 987 instances of the audiogram label data for 1000 epochs. The fine-tuning process employs transfer
learning, leveraging the features that the model has already acquired from large datasets, leading to
expedited training times and often improved outcomes. Fine-tuning is particularly effective when working
with a limited amount of labeled data. Since the model has been trained on a large dataset previously, it can
successfully leverage this knowledge for the new task, needing fewer examples to achieve a satisfactory
level of performance.

In the domain of audiogram classification, the Bi-LSTM model, as specified in P4, has been implemented.
The original Bi-LSTM model, which was developed using Keras, has been adapted into TensorFlow Lite
format through the use of post-training quantization techniques. Overall, quantization is the method of using
lower-bit representations instead of higher-bit representations for a specific real-valued number. For
example, a continuous real number, which is usually represented as a 32-bit floating-point number, can be
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approximated with a discrete representation like an 8-bit integer. In deep learning, model parameters, such
as weights and biases, are initially stored as 32-bit floating-point numbers to enable high-precision
calculations during the training phase. After the training process is completed, these parameters can be
reduced to 16-bit floating-point or 8-bit integer representations. This reduction in precision leads to a
decrease in the overall size of the model, thus improving its efficiency for deployment on mobile devices
[47]. Moreover, all YOLOv5s models utilized during the digitalization phase also required optimization for
mobile functionality. Optimization minimizes the computational burden of the model, thereby reducing
latency during inference, which enables models to operate more swiftly and efficiently—an essential
requirement for real-time applications. Furthermore, optimized models utilize less power, a factor that is
especially critical for mobile devices dependent on battery longevity.

In the process of evolving mobile-optimized Al models, the 5-fold cross-validation method was utilized. The
performance assessment of the YOLOv5 model was performed using the mean average precision (mAP)
metric, a recognized benchmark for evaluating the success of object detection. The overall average
precision (AP) is calculated by averaging the AP values derived at each loU threshold outlined below:

1
mAP =+ » AP,

-

i=1

where AP; is the average precision of each class and N is the total number of classes. In the paper the loU
threshold was set at 0.5.

The paper also presents a manual evaluation of the application’s performance across devices with varying
budget options. The complete system underwent testing using a collection of twelve audiograms, each
differing in complexity, under two distinct lighting conditions (50 lux and 500 lux) across three separate
devices. The app's performance on various smartphone cameras was evaluated by quantifying the number
of audiogram lines that were not accurately detected by the application due to inadequate image quality.
Furthermore, any detection errors noted during the testing process were utilized to assess the efficacy of
the line interpolation techniques incorporated within the application.

The essential technical requirements for using the developed mobile application consist of a minimum
Android version of 9, at least 6 GB of RAM, a minimum of 400 MB of storage capacity, and a camera sensor
with a resolution of at least 12 MP. At the time of writing, new devices that meet these specifications can be
obtained for under 100 USD, while used devices can be had for less than 50 USD. This makes the
application viable for use even in low-income areas.

The proposed model for audiogram detection based on YOLOVS5, reached an 99% mAP50. Relative to the
findings of Chairh and Green [41], this model demonstrated a significant enhancement in mAP50, with an
improvement of 15 percentage points. In contrast, Yang et al. [42] reported an exceptional 100% accuracy;
however, their results did not address mAPS50, making it difficult to perform direct comparisons.

In analyzing the symbol detection model, the performance metrics stand out, with a mAP50 of 98%. When
these results are compared to those from alternative symbol detection models, the study by Chairh and
Green [41] shows a significantly lower score of 39% mAP@?50. Additionally, when evaluating the outcomes
presented by Yang et al. [42], the accuracy achieved is closely aligned with that of the model in
question(98.11%), although it should be noted that in this case the authors also failed to provide a clear
statement regarding the mAPS50 value.

In terms of the label detection, the proposed model achieved a mAP@50 of 99%. The comparative analysis
shows that the performance metrics of the presented model greatly exceed those of Chairh and Green [41],
whose model achieved 34% mAP@50. Furthermore, the study conducted by Yang et al. [42] takes a
different approach from training a YOLO-based model, focusing entirely on an OCR system that reaches an
accuracy close to 99%, with aligns with the 99% mAP@50 of the model presented. This being said, in the
proposed application the label detection system integrates OCR results with those from YOLO for a more
thorough label detection. The merging of these two models produces superior results under conditions of
noisy images. This is particularly noticeable when the OCR does not recognize blurred labels, while the
YOLO model manages to detect them.
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The manual evaluation of the application revealed it to be fully functional across all tested devices. In more
intricate scenarios, the line interpolation feature became progressively essential, yet the system continued
to exhibit proficiency in accurate audiogram classification. Higher-end devices displayed superior
performance in the Hough line detection system, however even devices from lower-cost options exhibited
commendable results.

In conclusion, the research introduces a mobile application aimed at the thorough classification of hearing
loss types by utilizing audiograms obtained via a smartphone camera operating on the Android platform.
The application employs state-of-the-art techniques for the scanning, digitization, and classification of
audiograms. The digitized audiograms are classified using the Bi-LSTM model from a prior study (P4).
Moreover, the application showcased has the capacity to function as an accessible and detailed diagnostic
support tool for physicians in clinical settings.

4.3. Author’s contribution to the state of the art

v The pioneering app equipped with a fully on-device Al-enabled tool for the interpretation of pure-
tone audiograms utilizing a smartphone. This strategy delivers real-time and fully offline diagnostic
support, representing a crucial innovation for limited-resource areas.

v' The application has been released under an open-source license to promote transparency,
reproducibility, and worldwide collaboration. It allows for customization and adaptation to different
clinical settings.

v’ A three-stage processing architecture - audiogram detection, audiogram digitalization and hearing
loss classification - has been integrated into a seamless automated diagnostic workflow.

v" An innovative technical pipeline has been developed for label detection, integrating the results of
OCR and YOLOVS.

v" The developed app was tested across different smartphones, including low-, mid-, and high-tier
options, in several scenarios to validate performance consistency.

v

The software responds to the rising global challenge of hearing loss, especially in locations that do
not have access to specialized audiological services, facilitating the app to be utilized on devices
available for under 50 USD.

4.4. Summary of audiogram classification in mobile app
This section is a summary of the mobile app allowing to classify audiograms described in (P5).

Outside of tonal audiometry laboratories, hearing evaluations are usually conducted through analysis of
audiogram images. Thus, application of the state-of-the-art classification models referenced in publications
P1-P4 e.g. in a general practitioners office necessitated the development of a tool extract audiometric data
from a printed audiogram. Furthermore, the objective was to design a user-friendly tool that could be
integrated into a medical setting, while ensuring patient confidentiality and eliminating the need for costly
equipment to support the classification model. Consequently, in light of contemporary medical trends [48],
the decision was made to create an application capable of swiftly scanning the test result report, extracting
audiometry data and immediate interpretation of the findings. An additional factor considered was to perform
all calculations on the mobile device itself, thereby avoiding the transmission of data to an external server
and mitigating the risk of storing sensitive patient information.

An Android application meeting the requirements described above has been successfully developed under
an open-source license, thus allowing further development. All code is available on GitHub [49].

The application was developed by introducing a three-step process: scanning, digitizing, and classifying the
audiogram. All detection models were evaluated using standard metrics, and the application was subjected
to thorough manual testing to assess its overall functionality. The findings unequivocally demonstrate that
the application is appropriate for deployment even in low-income medical settings.
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5. Summary and conclusions

This chapter concludes the dissertation based on a consistent series of five publications, which covered the
title research on application of artificial intelligence algorithms for analysis of pure tone audiometry.

Section 5.1 summarizes the results of the presented research in terms of meeting the set research goals
and verifying the research hypotheses formulated in Section 1.3. Additionally, the obtained results are briefly
commented in the context of other results from related literature. The final Section 5.2 outlines potential
areas for the further research in application of Al in the field of audiology.

5.1. Summary of research goals and conclusion

The research goal (G1), aiming for review of existing classification models of pure tone audiometry data and
their possibility to be applied in medical settings, has been achieved and is covered primarily by publication
(P1) and (P4). Given that only two publications exist concerning the classification of hearing loss types, a
standalone review paper on this topic was not feasible. In summary, the first of the existing solutions,
proposed by Elbasi and Obali [20], classified raw audiometry data with an accuracy of only 95.5% and was
evaluated on a small dataset comprising merely 200 samples. The second solution, presented by Crowson
et al. [21], attained a satisfactory accuracy level of 97.5% using the ResNet-101 model. However, this was
accomplished on a specific set of audiogram images. While the structure of audiograms is generally
consistent, there can be notable variations between audiograms produced by different hardware and
software configurations. In addition to differences in background and line colors, audiograms may also vary
in the volume of information presented (e.g. they may provide data for one ear or both). Consequently, a
universal approach to classifying tonal audiometry results cannot rely solely on an image classifier.

The goal (G2), which aimed to test different neural network architectures on raw audiometry data to develop
a model for hearing loss type classification has also been successfully achieved. The related research has
been published in papers (P1) — (P3), which describe results of testing 15 distinct machine learning and
deep learning models. In summary, the best results have been obtained by models based on CNN and RNN
architectures.

To goal (G3), which aimed to develop a deep learning model for hearing loss type classification accurate
enough to allow its implementation in clinical settings was successfully achieved in (P4). In conclusion, the
Bidirectional Long Short-Term Memory architecture has been developed and assessed for the purpose of
classifying audiometry test results into four distinct categories: normal hearing, conductive hearing loss,
mixed hearing loss, and sensorineural hearing loss. The network has been trained on 15,046 hearing test
results that were analyzed and categorized by professional audiologists. The proposed model attains a
classification accuracy of 99.33% on external datasets, meeting the accuracy requirements and showing an
improvement over the 97.5% accuracy reported by Crowson et al. [21].

Finally, to the goal (G4), which aimed to create of a mobile application allowing for the use of the previously
developed to classify the type of hearing loss from a photograph of audiometric test results has been
successfully achieved in (P5). In summary, the application facilitates the scanning of hearing reports,
automatically detects and separates audiograms, digitizes them utilizing YOLO, OCR, and image
processing techniques. Subsequently, it employs the model introduced in (P4), which is optimized for mobile
devices, to classify the scanned audiograms as either normal hearing or one of the three types of hearing
loss.

As a result, it can be concluded that all the research goals of this dissertation have been successfully
accomplished. Meeting all the research targets derived from the research hypotheses also permits the
evaluation of the research hypotheses themselves.

Hypothesis H1 stated that “The application of modern neural network architectures to classification of
hearing loss types based on audiometric data can push the state of the art and deliver performance and
accuracy viable for introduction in clinical practice”. Validating this hypothesis is directly associated with the
accomplishment of objective G3 and the publication (P4), where the proposed Bi-LSTM model realized an
accuracy of 99.33%, in contrast to the 95.5% accuracy of the solution offered by Elbagi and Obali [20] on
pure audiometric data. Moreover, the proposed Bi-LSTM model exhibited a greater accuracy than that
reported by Crowson et al. [21], which was 97.5% on raster data. In both cases, the results were derived

41



from datasets that were significantly smaller and likely less representative than that on which the proposed
Bi-LSTM model was trained. To summarize, the deployment of advanced neural networks, notably those
founded on RNN principles, can enhance the present state of the art in terms of hearing loss types,
while the achieved accuracy makes the developed model viable for introduction in clinical practice

Hypothesis H2 declared that “Modern neural network architectures dedicated for processing raster and time-
series data are capable of accurate classification of raw tonal audiometry test results”. Establishing this
hypothesis is intrinsically connected to objective G2 and the publications (P1 — P3). The novel methodology
for the interpretation of pure audiometric data as a time series yielded surprisingly positive results. This was
already demonstrated in publication P1, where the RNN model achieved a notably better performance (96%
achieved by simple RNN) on the binary classification challenge than the more commonly employed
feedforward network model for this data type (94%). Furthermore, the CNN, which converted the tonal
audiometry results into a matrix with pixel values corresponding to the individual tonal points, showed a
slightly inferior performance compared to the RNN at 95%. Similar relationships were observed in the more
intricate evaluations of the algorithms and architectures discussed in (P2) and (P3). None of the machine
learning models crossed the 86% accuracy threshold when the trained on the original tabular data structure.
In contrast, altering the data structure yielded results of 95.63% for the LSTM network (when converted to
time series) and 93.76% for the CNN network (when transformed to raster). In conclusion, advanced neural
network architectures that are specifically designed to handle raster and time series data can effectively
classify raw tonal audiometry test results.

Finally, hypothesis H3 stated that “It is possible to optimize modern neural network architectures to efficiently
operate on smartphones which cost less than 100 USD, thus providing healthcare professionals around the
world with a mobile application for classification of hearing loss types based on images of hearing test results
captured with a smartphone camera”. The process of validating this hypothesis is directly related to the
fulfillment of objective G4 and the publication (P5). Given the substantial need for this type of application in
developing countries, the app was purposefully tested on devices that can be purchased for less than 100
USD. The results of the tests clearly indicated that the app is entirely capable of classifying the type of
hearing loss based on a photograph taken with even a less powerful camera (with the minimum sensor
resolution being set at 12 MP). Moreover, the application can operate independent of a network connection,
with all calculations being performed locally by Al models optimized for mobile devices, ensuring enhanced
security of patient data. The overall findings, presented in (P5), demonstrate that the application is
appropriate for deployment in low-income medical settings. In conclusion, it is possible to optimize
modern neural network architectures to efficiently operate on smartphones which cost less than 100
USD, thus providing healthcare professionals around the world with a mobile application for
classification of hearing loss types based on images of hearing test results captured with a
smartphone camera.

Additionally, this dissertation, based on the concise series of five published articles, proves the following
contributions of the author to the state of the art in application of artificial intelligence algorithms for analysis
of pure tone audiometry:

C1. The author illustrates that recurrent neural networks (RNNs) can effectively capture temporal
dependencies in audiometric patterns, surpassing the performance of conventional multi-layer
perceptron (MLPs).

C2. The Bi-LSTM model proposed by the author has reached a classification accuracy of 99.33%,
exceeding the current state-of-the-art in the classification of raw audiometry data, as noted by Elbasi
and Obali [20], who reported an accuracy of 95.5%. Furthermore, the performance is also superior
to the existing state-of-the-art in raster audiogram classification, as demonstrated by Crowson et al.
[21], which achieved an accuracy of 97.5%.

C3. The author introduced an application that provides professional audiologists with the capability to
employ an Al decision support system for tonal audiometry test result interpretation, potentially
reducing their workload, enhancing diagnostic precision, and minimizing the chances of human
error.
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C4. The author has developed an innovative open-source mobile application that features a fully on-
device Al-enabled tool designed for interpreting pure-tone audiograms through a smartphone. This
approach significantly advances the field by providing diagnostic support that is both real-time and
designed for offline use to professionals as well as general practitioners.

Table 6 presents the relationship between hypotheses (H1) — (H3), the corresponding research goals (G1)
— (G4) and author’s contributions to the state of the art (C1) — (C4).

Hypotheses Research goal Publication Dissertation Author’s
chapter contribution

H1 G3 P4 3.3 C2,C3

H2 G1, G2 P1, P2, P3 3.1,3.2 C1

H3 G4 P5 4 C3,C4

Table 6. The relationship between hypotheses (H1) — (H3), the corresponding research goals (G1) —
(G4) and author’s contributions to the state of the art (C1) — (C4).

5.2. Closing remarks and areas for future research

This thesis presents a comprehensive study that leads to a proposed author's solution for the
implementation of artificial intelligence algorithms in the analysis of tonal audiometry. The proposed model
for classifying types of hearing loss (including normal hearing) has demonstrated enhanced accuracy and
has been trained on a considerably larger dataset than those available in the existing literature. Furthermore,
a robust mobile application has been created under an open-source license, facilitating easy access for
medical professionals to the classification model on their smartphones. However, the research in that field
might be continued, in particular in the new potential areas of Al application in audiology, which have been
outlined by the author in conclusions of (P4) and (P5) articles.

The potential areas for further research include, but are not limited to:

A1. The development of a model intended to support a more accurate classification of test results,
which would factor in the probability of certain hearing disorders (e.g. otitis media, otosclerosis,
noise-induced hearing loss, Méniére's disease, acoustic schwannoma, etc.).

A2. Creation of a similar mobile application for audiogram classification, specifically designed for
iOS platforms.

A3. Design of an audiogram digitalization system that is effective for both printed and hand-drawn
audiograms.

A4. The continuous enhancement of the mobile app is intended to enable a precise hearing
evaluation to be carried out at home, incorporating automatic classification.

A promising outcome of this dissertation is the cooperation between Gdansk University of Technology and
Medical University of Gdansk, represented by doctors from the Department of Otolaryngology. The
integration of knowledge from two entirely distinct domains facilitates the development of solutions that
catalyze advancements in both information technology and healthcare.
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Abstract—Hearing loss Is one of the most slgnificant sensory
disabilities. It can have varions negative effects on a person’s
quality of life, ranging from Impeded school and academic
performance 1o tofal social isolation in vevere cases, 1Cis theres
fore vital that early symptoms of hearing loss are diagnosed
quickly and accurately, Audiology tests are commonly performed
with the use of tonal audiometry, which measures a patient’s
hearing threshold both in alr and bone conduction at different
frequencies. The graphic result of this test is represented on
an andiogram, which Is a dlagram depicting the values of the
patient’s measured hearing thresholds. In the course of the
presented work several different artificial neural network models,
including MLP, CNN and RNN, hove been developed and tested
for classification of audiograms into two classes - normal and
pathologlcal represented hearing loss. The networks have been
trained on a set of 2400 audlograms analysed and classified by
professional audiologists, The best classification performance was
achieved by the RNN architecture (represented by simple RNN,
GRU and LSTM), with the highest out-of-tralning accuracy belng
98% for LSTM. In clinical application, the developed classifier
can significantly reduce the workload of audiology specialists
by enabling the trunsfer of tasks related to analysts of hearing
test results towards general practitioners, The proposed solution
should also noticeably reduce the patlent’s average walt time
between taking the hearing test and recelving a diagnosis. Further
work will concentrate on automating the process of andiogram
interpretation for the purpose of diagnasing different types of
hearing loss.

1. INTRODUCTION

EARING IS one of the most important senses and is
crucial for a human to maintain full connectivity to

the world. Early on in life, hearing helps one to estublish
language skills which lays the groundwork for quick devel-
opment during school years. In daily tasks, hearing is used in
communicating with other people as well as for listening to
music, television and radio, and going 1o the cinema or theatre,
According to World Health Organization (WHO), currently,
around 430 million people globally require rehabilitation ser-
vices for their hearing loss [ 1. Estimations show that by 2050
nearly 2.5 billion peoplke will be living with some degree
of hearing loss, @t least 700 million of whom will require
rehabilitation services 1], Overall, hearing impairment has
devastating consequences for interpersonal communication,
psychosocial well-being, quality of life and economic inde-
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pendence [2]. The consequences of hearing loss are [requently
underestimated and ignoring the initial symptoms usually leads
to further degradation, Once diagnosed, early intervention is
the key to successful treatment. Medical and surgical treatment
can cure most ear diseases, potentially reversing the associated
hearing loss. Research has shown that, particularly in children,
almost 604 of hearing loss is due to causes that can be
prevented (1], (6], [7].

The standard hearing test is carried oul using pure tone au-
diometry, which determines the hearing thresholds at different
frequencies. As a rule, & frequency range of the hearing test
varies within 125 — 8000 Hez. The sound level of pure tones
is given in dBHL, and the subject is tested in both air und
bone conduction, The test results in two data series contain-
ing discrete heaning thresholds in the function of frequency,
separately for both conductions. This daty series s usually
presented in the form of an inverted graph called audiogram.
An audiogram helps to determine the degree of hearing loss,
bat also the type of pathology: sensorineural, conductive or
mixed (3], [4]).

According to projections, the demand for professional au-
diologists will burgeon in near future |1]. Nowadays, around
8% of low-income countries have less than one otorhino-
luryngologist per million inhabitunts and about 93% hive
Jess than one audiologist per million inhabitants [1], [5]. In
this context, introduction of expert systems based on artificial
mtelligence for prelimimary audiogram mterpretation could
significantly reduce the workload of specialists, while at the
same time shortening the patient’s wait for a diagnosis.

Over the last decade, a comparison of several approaches
t0 heanng loss determination, including Decision Tree, Naive
Bayes and Neural Network Multilayer Perceptron (NN) model,
has been prepared by Eibagi & Obali [10]. The tests have
been carried out using a set of numerical values representing
Decibels corresponding o fixed frequency levels (750Hz
1kHz, 1 .5kHz, 2kHz, 3kHz, 4kHz, 6kHz. 8kHz). The achieved
accuracy was 95.5% in Decision Tree, 86.5 % in Naive Bayes
and 93.5 % in NN

A different approach was presented by Noma & Ghani [11],
who developed a classification system based on the relation-
ship between pure-tone audiometry thresholds and inner car

IEEE Catalog Number: CFP2285N-ART ©2022, PTI 163
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disorders symptoms such as Tinnitus, Vertigo, Giddiness etc.
The classifier, based on the multivariate Bernoulli model with
feature transformation, has shown to provide 98% accuracy of
predicting heaning loss symploms based on audiometry results.

Recently, Chanih et al. [12] presented their Data-Driven
Annotation Engine, a decision tree based audiogram clas-
sifier which considers the configuration, severity, and sym-
metry of participant’s hearing losses and compared it ©
AMCLASS [13], which fulfils the same purpose using a set of
general rules. Both classifiers have achieved similar accuracy
of around 90% across 270 different awdiometric configurations
by three hicensed audiologists,

More recently, Crowson et al, [14] adopted the ResNet-101
model 1o classity audiogram images into three types of hearing
loss (sensorinetral, conductive or mixed) as well as normal
hearing using & set of training and testing images consisting
of 1007 audiograms. This approach resulted in Y7.3% classi-
fication accuracy, however it is limited to processing images,

In summary, the combimation of neural networks and in-
creased compuling resources of new hardware architectures
has the potential to deliver faster overall tests results and
more detailed assessments|15), This being said, however, the
currently proposed solutions deliver classification accuracy in
the 90-95% runge, which, although very high. still leaves
considerable room for error. Clinical standards sugpest that the
margin of error should be kept under 5%[16] and optimally
should be close to 3% [17]. These requirements are met only
by two of the discussed classifiers. The method proposed by
Nomi & Ghani achicves 98% sccuracy. however it has been
designed fo predict significant symptoms of inner ear disorder,
and thus it cannot be used for generul purposes such as carly
detection of hearing degradation. The best audiogram classifier
10 date has been presented by Crowson et al., who used transfer
learning 1o adapt an established image classifier network to
analysis of audiogram 1mages. While this approach resulted in
a 97% classification accuracy, it exhibits scrious limitations.
Because it is an image classifier, it cannot be used with the
original data series produced by tonal audiometry. This means
that the dita series first need to be converted into audiogram
images, which may result in data loss. Moreover, although
the structure of audiograms generally is similar, these can still
be significant differences between audiograms generated by
different hardware and software configurations. Aside from
differences such as background and line colours, audiograms
can also differ in the amount of presented information (eg,
they may contuin data for a single ear or both). A sample
companson of significant differences between audiograms
obtained from different sources is presented in Figures | and
2. In consequence, a universal solution for classifying results
of tonal audiometry cannot be based on an image classificr.

This study presents the development of @ neuryl network
for classification of discrete tonal audiometry data series.
In the course of this study, several different neural network
architectures have been trained and tested wath the use of 2400
audiogram data serics analysed and classified by professional
audiologists. The goal of the presented study was to achicve a
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high enough classification accuracy for the developed network
to be applicable for use m a ¢linical environment.

Tl. MATERIALS & METHODS
A, Dara

The study has been conducted with the use of 2400 data se-
ries containing results of pure tone audiometry tests performed
from 2020 to 2021 by clinicians working at the Otolaryn-
gology Clinic of the University Clinical Centre in Gdansk,
Polund. The data contains 650 examples of normal hearing
and 1750 exumples of pathological hearing loss. The tests had
been performed in a soundproof booth, sccording to 1SO 8253
and [SO 8253 standards. Air comluction tests employed TDH-
39P headphones, while bone conduction testing involved i
Radioear B-71 bone-conduction vibrator. The data series have
been snalysed and labelled by expent audiologists from the
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Medical University of Gdansk Department of Otolaryngology
according to established methodology {9]. In consequence, the
daraset has been classified into two subsets: heanng pathology
and normal hearing.

B Preprocessing

The input data series contained numencal information about
tonal points, defined as loudness (dB) for a given frequency
(Hz). in XML format. The dataset included the following range
of frequencies:

125Hz. 250Hz, 375Hz. 500Hz, 750Hz. 1000Hz, 1500Hz,
2000Hz, 3000Hz, 4000Hz, 6000Hz, 800D0Hz.

Every tested frequency has been assigned a londness level
in the range from -10dB 1o 12008, 1f certain frequencies had
not been registered during the hearing test, they have not been
included 1n the comesponding data scries.

C. Testing methodology

Using the prepared dataset, three different neursl network
architectures have been trained 10 interpret 1onal audiome-
try data and in order to differentiate normal hearing (N)
from pathological heaning loss (P). The tested architectures
included Multitayer Perceptron (MLP), Convolutional (CNN)
and Recurrent (RNN) neural networks, all of which have
been previously applied o data classification problems [18].
[19], [20]. The general workflow of the presented study is
shown in Fig. 3, Each model has been assessed using k-fold
cross-validation, which consists of dividing the data into k
subsets and training the model k-times with k-1 subsets, with
a different subsel being used for testing in every iteration. The
presented research used & = 5, which resulted in train to test
dataset proportions of 30% to 200, respectively,

Bl Cvvame Vialubwtion

Il

-

f

After revealing the best performing architecture, further
tests and optimizations would be camed out in order to
improve classification accuracy,

111, RESULTS

The purpose of the mitial tests wis 10 reveal the best
neural network architecture model for classitication of pure
tone audiometry data. The tested neural network architectures
included MLP, CNN and RNN. The results of those iesis are
presented in Table 1,

TABLE |
COMPARISON OF PERFORMANCE RESULTS OF PRELIMINARY MODELS
Pamameters | MLP NN AN
Accuracy 09458 04563 0,9060:1
Lans 6420 01185 04340
Procissan 0.RI55 N894 0, 50462
Recall 10 009340 0,.5430
Fi LLAUIEEY noiad 09244

As it cun be seen, initial rescarch revealed that the best
classificaion performance has been produced by the RNN
architecture model. Once the most promising neural network
architecture has been identified, three of its variants have been
trained and optimized in terms of hyper parameters, including
number of nodes and hidden layers, dropout layers, leaming
and decay rate. The first model consisted of a simple RNN,
second one wis based on Gated Recurrent Units (GRU) [22]
and the tast ope used Long Short-Term Memory (LSTM) [21].
The results of these tests are shown in Table 1L

Receiver Operating Characteristics (ROC) curves with cor-
responding Arca Under the Curve (AUC) parameters for these
muodels are presented in Fig. 4.

TABLE Il
COMPARISON OF PERFORMANCE RESULTS OF RNN MODELS
Parsmelers Semple GRU 1LST™
RNN
Accuracy ) naTT1 0512
Loss 00836 00630 0.0510
Precisson 0,903 04459 05304
Recall 0060 n6s 0.9920
Fi 09344 04565 0. x50

The cross validation scores for & = 5 with LSTM classifier
are given in Table 11 The average accuracy was 98.08% (+/-
0.17%).

ol

Fig b Workhone of processes leabmg i mode! evalisiion

TABLE 11
K-FULD VALIDATION SCORE OF LSTM MODEL (& = 5).
Iteration | 2 3 - 5
Acouny AT 90 8.8 a7 M W7l §8.22

A detaled analysis of classification performance achieved
by the tested RNN models can be made using a confusion
matrix, which visualizes the number of True Positives (TP

165
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- patients who have been properly classified with hearing
loss). True Negatives {TN - patients who have been properly
classified with good hearing). False Positives (FP - patients
who have been improperly classified as hearing loss) and False
Negatives (FN - patients who have been improperly classified
with good hearing). The confusion matnix for the tested RNN
mexdels is presented in Figures 5, 6 and 7.
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IV. DISCUSSION

Initial tests have shown that the simple RNN architecture
maodel delivers noticeably better pure fone audiometry clas
sification results in comparison 0 MLP and CNN medels,
achieving accuracy of 96.04% versus 94.58% und Y5.63%
respectively (Tah. T), The chosen network architecture appears
to have the largest impact on classification accuracy, as fur-
ther tests and optimizations resulted in minor improvements.
Optimization of parameters such as the number of nodes and
hidden layers, dropout layers as well as learning and decay
rate improved the accuracy of simple RNN from 96.04%
W 96.46%. In comparison, applying the same optimization
process 0 MLP and CNN modeis did not result in markedly
improved evaluation parameters, A possibie explanation for
this could be the fuct thut RNN have been designed o process
time series data, and structurally pure tone audiometry results
could be inlerpreted us 4 special case of time series. This
could be further explored by testing the effectiveness of more
advanced RNN models such as GRU and LSTM. As it can be
seen in Tab. 11, both of these models obtained more than 97%
accuracy, with the highest out-of-training set accuracy being
achieved by LSTM at 98.12%. While these results, which
have been cross-validated using the S-fold method, would
seem o indicate a general prevalence of the RNN architecture
in processing audiometry data, establishing an effectiveness
hierarchy of RNN models is @ more complex matter. Although
LSTM has shown the best classification accuracy, when anal-
ysed in terms of confusion matrix, the lowest number of False
Positives (FP) was obtained by GRU (Figures 6 and 7), with
LSTM taking second place. In comparison, the simple RNN
produced over 62% more False Positives than LSTM and 85%
more than GRU.

Overall, simple RNN and GRU performed equally well in
terms of False Negatives (FN), producing them only in 0.8%
of cases, whereas LSTM significantly outperformed the other
models with only one case of error occurring. It can be argued
thit when classifying results of pure tone audiometry lests,
the FN number 15 more important than FP because it shows
that a patient does not hive hearing loss when they actually
do. In this case the patient may not receive treatment and
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get worse because their disease was undetected. On the other
hand, a false positive would only result in the patient being
unnecessarily referred to an awdiologist, who would properly
interpret the test results and inform the patient that their level
of hearing Is normal.

Summing up, it can be said that the 98.12% classification
accuracy achieved by LSTM fulfills the established margin
of error critenia and is significantly better than the 97.5%
classification accuracy offered by the best existing algorithm
for audiogram data classification, proposed by Crowson et
al, [14]. While some of the difference could be attributed
to the rival method providing a larger set of classes. the
presented method provides an additional advantage in the type
of processed data: it works with original tonal audiometry
data series instead of audiogram images and therefore 18 more
universal. The only rival method also designed for processing
tonal audiometry data series, presented by Ethag & Obali [10],
provides an even lower 95.5% classification accuracy,

In terms of classifying pure tone audiometry data, the only
existing solution with & similar classification accuracy level
(98%, proposed by Noma & Ghani [11]), has been designed
1o predict significant symptoms of mnner ear disorder and thus
cannot be used for gencral classification of tonal andiometry
test results.

V. CONCLUSIONS

The presented work aimed to develop a neural network
for classification of discrete tonal audiometry data series with
accuracy high enough for medical application. In the course
of this study, several different peural network architectures,
including MLP, CNN and RNN. have been trained and tested
with the use of 2400 audiogram data series analysed and
chassified by professional audiologists. The highest classifi-
cation accuracy was achieved with an optimized LSTM RNN
at Y8.12%. The high accuracy of the obtained neural network,
particulardy the low number of False Negatives (0.2%), al-
lows for its application at the Otolaryngology Clinic of the
University Clinical Centre in Gdansk, Poland. Results of pure
tone audiometry tests, which thus far needed to be examined
by professional audiologists, can now be classified with the
developed neural network under the supervision of general
practitioners. This change may result in a significant reduction
of the workload of audiology specialists, as they will no longer
need to deal with patients whose symptoms are not caused by
hearing Joss (which may amount 1w over 10% of all patients
subjected Lo pure tone audiometry tests) (23], [24]. After it has
been further tested in practice, the developed solution could
be introduced directly in the audiometry lahoratory, ensuring
that the patient receives a first interpretation of the performed
tests as soon as they have been completed. Further work will
concentrute on expanding the clussifier for the purpose of
diagnosing different types of hearing loss,
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Abstract—Hearing is one of the most crucinl senses for all
humans, It allows people to hear and connect with the
environment, the people they can meet and the knowledge they
need to live their lives to the fullest. Hearing loss can have a
detrimental impact on a person's quality of life in a variety of
ways, ranging from fewer educational and job opportunities
due to impaired communication to sockal withdrawal in severe
situations. Early diagnosis and treatment can prevent meost
hearing loss. Pure tone audiometry, which measures alr and
hone conduction hearing thresholds at various frequencies, is
widely used to assess hearing loss. A shortage of audiologists
might delay diagnosis since they must analyze sn audiogram, «
graphic representation of pure tone audiometry test results, to
determine hearing loss type and treatment. In the presented
work, several Al-bused models were used  to classify
audiograms into three types of hearing loss: mived, conductive,
and sensorincural. These models included Logistic Regression,
Support  Vector Machines, Stochastic Gradient  Descent,
Decision Trees, RandomForest, Feedforward Neural Network
(FNN), Convolutional Neurnl Network (CNN), Graph Neural
Network (GNN), and Recurrent Neural Network (RNN), The
models were trained using 4007 audiograms classified by
experienced audiologists, The RNN architecture achieved the
best  classification  performance, with  an  out-of-training
accuracy of 94.46%. Further rescarch will focus on increasing
the dataset und enhancing the accuracy of RNN models.

I. INTRODUCTION

EARING is considered an essential sensory organ
since it provides us with valuable mformation about
the external environment. In addition, it enables us to inter-
act with the outside world, communicate with others, remain
safe, and derive enjoyment from a variety of auditory experi-
ences. Hearing complements our other senses, such as sight
and sensation, to provide a complete understanding of our
surroundings.
According to the World Health Organization (WHO),
more than 1.5 billion persons worldwide suffer from hearing
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loss, of which 430 million have moderate or severe heaning
loss in their better hearing ear. According to the projections
of the World Health Organization, by 2050 nearly 2.5 billion
people will have hearimg loss and at least 700 million will re-
quire rehabilitation services. Formunately, many instances of
hearing loss can be prevented through curty detection and in-
tervention |1,

Although the majority of car discascs are curable, accu-
rute dizgnosis is a significant barricr to cffective treatment.
Audiologists, who are essential for the execution and inter-
pretation of lesting, are scarce worldwide. Approximately
923% of low-income countries have fewer than one audiolo-
gist per million people [1]. Given the disparity between the
supply and demund for hearing specialists, artificial intelli-
gence (Al) has the potental to resolve this problem. Al em-
ploys algorithms that enable computers (o recognize parlicu-
lar data analysis patterns and make conclusions. The most
prevakent Al application in tonal audiometry is hearing aid
personalization, in which Al systems assist both the hearing-
care expert and the patient in more precisely and efficiently
adjusting hearing mds to the client's preferences [2, 3, 4]

Another possible application of expert systems in andiol-
ogy is interpreting results of pure-tone sudiometry, which is
the standard methed for diagnosing hearing loss, Typically,
the examination 15 conducted while situated in an anechoic
chamber. 1t entails conveying increasimg-intensity purc tones
through headphones and determining the threshold for air
and bone conduction. In general, the results of the pure-tone
audiometry test arce presented as an inverted graph called an
audiogrum, which allows for identifying hearing impair-
ment,

When describing hearing loss, three aspecis are considered:
the type of heanng loss, the degree of hearing loss, and the
configuration of hearing loss. Three types of hearing loss arc

Thematic track: Recent Advances in [nformation
Technology ~ Doctoral Symposivm
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distinguished: sensorineural, conductive, and mixed. The pat-
tern of hearing loss across frequencies is determined by the
configuration (shape) of the audiogram, whereas the severity
is determined by the degree of hearing loss [5].

Classification of sutomated audiometry data has been in-
vestigated for a very long time. In the past ten years, there
have been o number of initiatives (o develop an automated
classification system sufficiently accurate for clinical appli-
cation. The most successful have been presented by Elbags
and Obali [6], who compared Decision Tree, Naive Bayes,
and Neural Network Multilayer Perceptron (NN) models for
determining hearing loss, The research was conducted on a
data set containing 200 samples divided into four categories:
normal hearing, conductive heanng loss, sensonneural hear-
ing loss, and mixed hearing loss. The accuracy of the classifi-
cation algorithms was 95.5% for Decision Tree, 86.5% for
Naive Bayes, and 93.5% for NN. While that work used raw
audiometry test results. Crowson et al. [7] applied the ResNet
models to classify rastenzed results in the form of audiogram
images into four categories of hearing (normal, sensorincural
hearing loss. conductive hearing loss, mixed hearing loss) on
a set of 1007 audiograms. Instead of completely trmning the
classifier from scratch, the authors osed transfer learning to
train the classifier using widely recognized raster classifica-
tion models. This method achieved a classification accuracy
of 97.5%. but 1t is limited to image analysss.

In conciusion, the combination of machine learning and in-
creased computational resources in innovative hardware ar-
chitectures has the potential to generate faster overall test re-
sults and more exhaustive evaluations in audiology [8]. De-
spite the type of hearing loss, the classification accuracy of
the currently proposed solutions ranges from 86 to 97%,
which, while extremely high, still leaves a substantial margin
of error. Moreover, while the best available sudiogram clas-
silier, presented by Crowson et al. | 7). achieved 97.5% accu-
racy, it ¢annot be applied to the original data series produced
by tonal audiometry due to being an image classifier. This
means that before classification the datasets would need 10 be
converted mio a particular format of audiogram images {alt-
hough the structure of audiograms s gencrally analogous, au-
diograms generted by different software can vary quite sig-
nificantly ). Additional problems would stem from the fact that
some types of software generate two audiograms (one for
each ear), while other software combines the information
from both ears into & single audiogram, posing a great diffi-
culty n universal analysis. Consequently, an image classifier
cannot form the core of a versatile solution for classifving to-
nal audiometry results, Moreover, the abovementioned stud-
ies on determining the type of hearing loss were carmied out
with a relatively small data set, ranging from 200 test results
in Elbagi & Obali |6] 10 1007 in Crowson et al. | 7], which
might have led to an oplimistic and uncertain evaluation of
model performance.

PROCEEDINGS OF THE FEDCSIS. WARSAW, POLAND. 2023

This study establishes the benchmark for machine leaming
and deep learning algorithms using a large set of discrete tonal
audiometry data series, Throughout the course of this investi-
gation, multiple Al models were trained and evaluated using
4007 audiogram data series analyzed and classified by profes-
sional audiologists, The purpose of this study was 10 investi-
gitte the performance of various Al solutions when applicd to
raw tonal audiometry data.

ILMATERIALS & METHODS

A Dara

The study was carried out on 4007 data series containing
the results of pure wae audiometry tests performed between
2017 and 2021 by clinicians at the Otolaryngelogy Clinic of
the University Clinical Centre in Gdansk. Poland. The data
class proportion is presented in Fig. 1. Conductive hearing
loss only has 674 examples, while mixed hearing loss has
1594 and sensorineural hearing loss has 1739, Each patient
provided a maximum of two test results, one for the lefl ear
and one for the nght, resulting in no duplication of data from
the same patient and ensuring adequate data variety.

a0 p—

Figure |, The three forms of hearing loss represented in
the dataset, along with their respective proportions.

Tonal audiometry was used to evaluate patients” hearing ac-
cording to the American Speech-Language-Hearing Associn-
uon (ASHA) guidelines. All tests were conducted in sound-
proof chambers (1SO 8253, 1SO 8253), The TDH39P head-
phones were utilized for air conduction testing, while the Ra-
dioear B-71 bone-conduction vibrator was used for bone con-
duction tesung [9].

Experienced audiologists Iabeled the morphologies of
hearing loss on the audiometry test results, dividing the set
into three classes according to established methodology [5]:
mixed hearing loss, conductive hearing loss and sensorineural
hearing loss.

Typrcally, the results of pure-tone audiometry are depicted
as an audiogram, which is a graphical representation of how
loud sounds must be at various frequencies for them to be au-
dible. In addition to a grapacal representation, sudiology
software generates XML files that comprise all information
regurding tonal points in the sudiogram. This study processes
raw audiometry data using XML files, analyzing five primary
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frequencies (250, 500, 1000, 2000, 4000 Hz) from both air
conduction and bone conduction,

B. Methodology

The aim of the study was 1o test the performance of several
different machine leaming algorithms at the task of classify-
ing tonal audiometry data. The goal of cach method was to
accurately categonze each dataset as mixed heanng loss (M),
conductive hearing loss (C) or sensorineural hearing loss (S),

u) Machine learning algorithmy

The mnitial phase of research involved testing the following
machine Jearning classification algorithms: Gaussian Naive
Bayes. K-Nearest Neighbors (KNN), Logistic Regression,
Support Vector Machines (SVMs), Stochastic Gradient De-
scent (SGD), Decision Tree wnd Random Forest, The second
phase of the study involved testing the following ANN archi-
tectures: Feedforward Neural Network (FNN), Convolutional
Neural Network (CNN), Graph Neural Network (GNN), and
Recurrent Neural Network (RNN). These techniques were
previously applied to the classification problem of medical
data [10. 11].

h) Data preprocessing

The input data series consisted of vertical information
about tonal points of air and bone conduction, defined as vol-
ume (dB) for & given frequency (Hz), obtained from XML
files. The frequency range of the dataset included 250Hz,
S00Hz, 1000Hz, 2000Hz, and 4000Hz. Each frequency tested
has been designated a loudness fevel between -10dB - and
120dB. The dataset did not contain any empty values.

Since GNN requires graph input, the vector was tumed into
a divected graph with 10 nodes and 18 edges. Frequency and
loudness values have been assigned to nodes, Figure 2 shows
a graphical depiction of the gruph.
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Figure 2. The GNN architecture’s input graph structure,

c) Model evatuation

The performance of the tested models was evaluated using
K-foid Cross-Validation, which is the process of splitting a
dataset into K folds, using K-1 datasets for training and one
for validation, The datasets are then rotated in consecutive
tests, allowing for moge accurale assessment of best, worst
and average classification performance. Based on the magmi-
tude of the dataset and the available computational resousces,

K was set to 5 in this study. Conseguently, the ratio of train to
fest datasets is 80% to 20%, respectively.

L. RESULTS AND DISCUSSION

The initial stage of research tested the classification perfor-
mance of a set of machine leaming algorithms. The resulls
have been expressed in terms of accuracy, precision, recall,
and Fl score, Due to the aforementioned class imbalance,
macro averaging was calculated. The outcome of those tests
is presented in Tabie 1.

Receaver Operating Charactenstics (ROC) curves with cor-
responding Arca Under the Curve (AUC) parameters, dis-
playing the discrimination performance of the tested machine
learning models in terms of true positives vs false positives
are presented in Fig, 3, The ROC Curve and the ROC AUC
score are essential tools for evaluating binary classification
models, but they can also be applied to multi-classification
problems. OVR method was selected, which stands for "One
versus the Rest™ and is @ method for evaluating multiclass
models that evaluates each class in comparison to the others
simultancousty. In this scenano, one class is deemed the "pos-
itive" class, while the other classes are deemed the "negative”
class. This reduces the muiticlass classification output to a bi-
nary classification output, allowing the use of all known bi-
nary classification metrics 1o assess this scenario [ 12].
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Figure 3. ROC curves with the AUC parameters for mi-
chine learning models.

As far as machine feaming algorithms are concerned, the
best results have been achieved by the Support Vector Ma-
chine classifier, which eamed 83.38% accuracy, The algo-
rithm also received best scores in precision, recall, F1, and
AUC, The Logistic Regression and Random Forest models,
which closely followed SVM. also scored above 80% accu-
ricy.

me
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TameL
COMPARISON OF PERFORMANCE RESULTS OF MACHINY LEARNING MODYLS, BEST IESULTS IN EACH CATEGORY HAVE BEEN HIGHLIGTED
IN GREEN
Gausslan Support Stochastic
Algorithm | Naive fohearest | Logistic Re- | Vector Ma- | Gradient | Decision | Random
Bayes chines Descent
62.14% T4.40% 8248% 81.38% T6.81% 79.49% S1.26%
Accuracy (+-843%) | (+-7.29%) | (4 T21%) | (402150 | (+-7.T8F) | (o 2.16%) | (/- 446%)
R7.68% 9N.51% 94.74% WI9T% %0965 92.99% 9.27%
Precision (+-9905%) | (+/-592%) | (+-5.69%) | (+-4.08%) | (+-7.77%) | (+/-568%) | (+/-4.52%)
62.14% 74.40% 82.48% 83.318% T681% 79.49% S1.26%
Recall (+-843%) [ (+-729%) | (+-T20%) | 1+-6.21%) | (+-T7.78%) | (/- 2.16%) | (+/-4.46%)
Fl TL6% 81.12% 87.38% BR.05% SH.51% 25.16% 86.58%
(44-532%) | (#/-451%) | (44-5.62%) | (4= LT6%) | (+-9.62%) | (+/-235%) | (-2.70%)

Stochastic Gradient Descent and K-Nearest Neighbors
achieved accuracy of 76.81% and 74.40%, respectively,
which puts them well behind the three leading methods, but
still i league sbove Gaussian Naive Bayes which scored only
62% accurscy.

It is worth noting that tree-hased classifiers have shown the
best accuracy stability in terms of 5-Fold vatidation, with ap-
proximately 2% standard deviation in Decision Tree and
around 4.5% in Random Forest, whereas for all other models
this parameter exceeds 6%. The problem of unbalanced data,
which is definitely present in this study. is one of the elements
that could have a negative impact on the scores of machine
leaming algorithms, which is particularly evident e.g. in the
poor performance of Gaussian Naive Bayes.

The second phase of research involved deep learning archi-
tectures such as FNN, CNN, GNN. und RNN, which were ex-
amined using the same criteria as machine leaming models.
The results of these tests are shown in Table I1. The ROC
curves with AUC parameters are presented in Fig. 4,

Concerning the tested artificial neural network models,
RNN performed best in terms of accuracy, precision, recall,
F1 score und AUC. with 94.46% accuracy and 94.45% Fl1
score. This was 1o be expected, as the input datasets could be
considered sequential data, which is a known strength of RNN
[13). These results also confirm the findings of a recent study
114), which evaluated different neural network designs in or-
der to develop a binary classifier for normal and pathelogical
hearing Joss based on similar data, where the best results were
also achicved by the RNN architecture, The second best
model was CNN with roughly one percentage point less,
which may be a little surprising given that CNNs are generally
employed to evaluate images. This may be explained by the
fuct that CNNs perform best when processing data matnices,

and the input datasets conld be interpeeted as small (5x2) ma-
trices, FFN generally achieved third place, while GNN
achieved the worst scores.

The overall performance differences between machine und
deep feaming models are largely in favor of artificial neeral
networks, with the exception of GNN, which remained at the
level of machine learning techniques, The achieved results
differ significantly from previous research (performed by El-
bagt and Obali [6]), which achieved 93,5 % accuracy in clas-
sifying raw audiometry data with Decision Tree. It should be
noted, however, that the validity of those results may be ques-
tioned because they were obtaned on only 200 samples,
which is 20 times kess than the dataset used in the current
work. Furthermore, there is no information on the class pro-
portion and the employed cross validation process.

Tawr 1L
COMPARISON OF PERFORMANCE RESULTS OF DULP LEARNING MODELS.
BESERESULTS IN FACH CATEGORY HAVE BEEN HIGHLIGHTED IN

GRFFN

Model FFN ONN GNN RNN
Accu- | 89.67% 93.46% BR15% 94.406%
racy (+-212%) | (+/- 083%) | (+/-9.09%) | (+/-0.91%)
Precl- | 90275 93.50r% 86.04% M.50%
sion (+-LT8%) | (+/- O.83%) | (+- 4.68%) | (+/-091%)
Recall 89.67% 93.46% 83,15% 94.46%

(+0-202%) | (44~ 083%) | (4-9.00%) | (/- 091%)
¥i 89.71% 93.46% 82.15% MA%

(+-200%) | (+/-083F) | (+- 1L02%) | (+/-091%)
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In the above context, while best accuracy of 94,46%,
achieved by RNN, is lower than the current state of the art in
classification of audiometry test results (97.5%) held by
Crowson et al. [7] for raster datasets, that score could be put
inquestion as well. The most significant challenge with triin-
ing deep leaming models from scrateh is that it must be done
on 4 Lurge ditaset, or else it may miss important patterns. Re-
liabie training of ANN classification models usually requires
datasets consisting of at least 1000 samples. For raster da-
tasets this may be alleviated somewhat by employing aug-
mentation of much smaller datasets (which was the strategy
applicd by Crowson et al, [7]). Unfortunately, this method
works best if the input dataset was sufficiently representative.
In this case, various types of audiometry software can gener-
ate significantly different images, ranging from minor differ-
ences in plot color and measurement point indicator size 10
changes that can significantly impair the performance of an
automated classifier, such as displaying test results from both
ears on a single plot. As a result, unless an appeopriately com-
prehensive audiogram database is constructed (which would
require collection and classification of hundreds of thousands
of audiograms produced by all types of audiometry software),
image-trained classification models will only work with cer-
tain types of andiometry data. In comparison, a classifier
which operates on raw audiometry data allows for more flex-
ible and wider application in the climcal environment. This
being said. the best classification accuracy of 4,46%, which
was achicved in this test by RNN, could be considered 100
low for clinscal application due to a prohibstively large num-
ber of false negatives. The latter would suggest that producing
arcliably accurate raw audiometry data classifier will require
constructing an approprialely large and representative train-
ng dataset.

IV. coNCLUsion

The presented work aimed to test several Al-based algo-
rithms for classification of discrete tonal audiometry data se-
nies into three types of hearing Joss: sensorineural, conduc-
tive, und mixed. In the course of this study, several different
machine and deep learning models, including Gaussian Naive
Bayes. K-Nearest Neighbors, Logistic Regression, Support
Vector Machines, Stochastic Gradient Descent, Decision
Trees, Random Forest. Feedforward Neural Network, Convo-
lutional Neural Network, Graph Neural Network, and Recur-
rent Newral Network, have been tramed and tested with the
use of 4007 audiometry data serics analyzed and classificd by
professional andiologists. The highest classification accuracy
was achieved with Recurrent Neural Network at 94.46% (+/-
0.91%). The results of the study verified the general hierarchy
of classification performance established by prior research,
however they also suggest that the previously reported levels
of classification accuracy (achieved for vastly inferior dataset
sizes) might have been overly optimistic, In the above con-
text, further work will concentrate on expanding the dataset
and improving RNN models in terms of accuracy.
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Abstract:

The evaluation of hearing loss (s primarily conducted by
pure tone audiometry testing, which is often regarded
as the gold standard for assessing auditory function.
This method enables the detection of hearing impair-
ment, which maoy be further identified os conductive,
sensorineural, or mixed. This study presents a compre-
hensive comparison of a variety of Al classification mod-
els, performed on 4007 pure tone audiometry samples
that have been lobeled by professional audiologists in
order to develop an autornatic classifier of hearing loss
type. The tested models include random forest, support
vector machines, logistic regression, stochastic gradient
descent, decision trees, convolutional neural network
(CNN), feedforward neural network (FNN), recurrent neu-
ral network (RNN), gated recurrent unit (GRU) and Jong
short-term memory (LSTM). The presented work also
investigates the influence of training dataset augmenta-
tion with the use of a conditional generative adversarial
network on the performance of machine learning aigo-
rithms, and examines the impact of various standord-
ization procedures on the effectiveness of deep learning
architectures. Overall, the highest classification perfor-
maonce was achieved by LSTM, with an out-of-troining
accuracy of 97.56%.

Keywords: classification, hearing loss types, pure-tone
audiometry, RNN, LSTM, evaluation

1. Introduction

Hearing is regarded as a vital sensory organ, as it
furnishes us with crucial insights into our surround-
ings. Itenhances our perception of the environment by
complementing our visual and tactile senses, thereby
facilitating an extensive comprehension of our envi-
ronments. Furthermore, possessing adequate audi-
tory perception allows us to engage in effective com-
munication, maintain our safety, and receive gratifica-
tion from a diverse range of audio activities, such as lis-
tening to music or watching theatrical performances.

In consequence, hearing loss has wide-ranging and
significant consequences, which encompass, inter alia,
the inability to engage in communication with others,
as well as a delay In the acquisition of language skills
in youngsters,

Man( 25 NeD)

Toalives 4.0 Licame

This can result in social isolation, which in
turn may lead to feelings of loneliness and frustra-
tion, especially in elderly Individuals experiencing
impaired hearing. According to data presented by the
World Health Organization (WHO), the current global
prevalence of hearing loss affects more than 1.5 billion
people, of which 430 million suffer from moderate to
severe hearing loss in their superior ear As stated
by the WHO, it is projected that by 2050, almost 2.5
billion individuals would experience varying levels of
hearing impairment, and at least 700 million of them
will need rehabilitation treatments [1]. At the same
time, however, WHO also claims that almost half of all
cases of hearing loss can be avoided by implementing
public health interventions. Additional reductions in
hearing impairment can be achieved by conducting
screenings and implementing early interventions dur-
ing childhood, such as utilizing assistive devices or
considering surgical alternatives.

The evaluation of hearing loss is primarily con-
ducted by pure tone audiometry testing, which has
been considered as the most dependable approach for
assessing auditory function. The procedure involves
presenting pure tones at specific frequencies, either
through headphones {air conduction) or by using a
vibrator placed on the mastoid section of the temporal
bone (bone conduction). The objective is to find the
lowest level at which the Individual can perceive the
sound, known as the threshold, for each frequency
[2). The results of a hearing test are presented on an
audiogram, which allows for the Identification of the
particular type and degree of hearing impairment.

In medical practice, the classification of hearing
loss is determined by the configuration, severity, type
(location of leston), and symmetry found In the out-
comes of pure-tone audiometry examinations.

The type of hearing loss may be categorized as
conductive loss, which is caused by problems in the
outer or middle ear, or sensorineural loss, which is
a result of difficulties in the Inner ear and auditory
nerve, Alternatively, it could be a combination of both,
known as mixed hearing loss. This classification must
be performed by professional audiologists after each
pure tone audiometry test. Particularly problematic
on a global scale is the scarcity of specialized audiol-
ogists; in nearly 93% of low-income nations, there is
fewer than one audiologist per million citizens [1].
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Given the financial and social obstacles in reducing
the large discrepancy between the demand and supply
of hearing specialists, it is important to investigate
the capability of artificial intelligence (Al) methods in
reselving this issue. An automated decision support
system could potentially offer a range of henefits, from
minimizing human errors to entirely expediting the
evaluation of pure-tone audiometry tests to general
practitioners. The development of such a system could
lead to a reduction in the workload required by spe-
cialists and a decrease in the waiting time for patients’
diagnoses. Moreover, practical application of such a
system would necessitate the establishment of clinical
guidelines and best practices, ¢nsuring that health-
care providers adhere to a uniform treatment process,
improving patient diagnosis and decreasing treatment
variability.

In the above context, the paper presents a compar-
ison of machine learning and deep learning methods
applied to the classification of 4007 tonal audiometry
test results that were previously analyzed and labeled
by expert audiologists. The objective of this study was
to examine the efficacy of different artificial intelli-
gence (Al) techniques when utilized with raw tone
audiometry data, The latter is particularly significant
because pre-classified pure tone audiometry data is
relatively difficult to obtain In large quantities, which
is why no prior works had the oppertunity to perform
an in-depth classification using state-of-the-art meth-
ods.

Furthermore, the presented work will serve as a
basis for selecting an optimal model for classifying
different types of hearing loss in clinical settings,

This article is an extension of the research pre-
sented in the 18th Conference on Computer Sci-
ence and Intelligence Systems FedCSIS 2023 during
the Doctoral Symposium—Recent Advances in Infor-
mation Technology (DS-RAIT) [3]. The study was
expanded to include several new Al models and pro-
vide a more thorough assessment of the applied deep
learning algorithms, including an examination of the
Iimpact of various data preprocessing methods. More-
over, the extended paper also discusses the effects
of expanding the training dataset with the use of a
generative adversarial network (GAN).

2. Literature Review

Research on automatic audiometry data classifica-
tion has been ongoing for an extended period of time,
In past years, several endeavors have been made to
develop an automatic classification system that is suf-
fictently accurate to Justify its practical implementa-
tion. The papers can be categorized into two primary
themes: one related to the determination of inltial
configurations of hearing aids, and the other focused
on the classification of hearing loss types. In the lit-
erature there are numerous publications that discuss
the former subject [4-6]; however, the subject of auto-
matlc classification of different forms of hearing loss Is
substantially less explored.

The first attempt at an automated classifier of
hearing loss types was done by Elbagt and Oball in
2012 [7] who carried a comparative analysis of vari-
ous methods for identifying the type of hearing loss,
including the implementation of multilayer percep-
tron (MLP) mode classifiers, Decision Tree C4.5, and
Naive Bayes. The investigation was conducted on a
dataset of 200 samples, which were classified in four
distinct groups: normal hearing, sensorineural hear-
ing loss, conductive hearing loss, and mixed hearing
loss. The input data was formatted as a sequence
of numerical values that represented decibels, which
corresponded to constant frequency levels, The Deci-
sion Tree (€4.5) approach produced an accuracy of
95.5%, the Naive Bayes method achieved an accuracy
of 86.5%), and the MLP algorithm obtained an accuracy
of 93.5%.

A different method, which focused on raster
images instead of tabular data, was presented several
years later by Crowson et al. (2020) [8], who classi-
fied audiogram images using the ResNet model into
three distinct hearing loss categories [conductive, sen-
sorineural, or mixed) in addition to normal hearing, A
dataset consisting of 1007 audiograms was utilized for
both training and testing objectives, Instead of starting
the classifier training process from the beginning, the
scientists implemented transfer learning for training
the classifier by utilizing well-established raster clas-
sification models. The classification accuracy of this
approach reached 97.5%.

Overall, the integration of machine learning with
enhanced computational resources In cutting-cdge
hardware architectures holds the promise of produc-
ing quicker overall test outcomes and more compre-
hensive assessments in the field of audiology [9).
Regarding the categorization of hearing loss types,
the currently suggested methods exhibit classification
accuracy ranging from 86% to 97%. Although this
accuracy is remarkably high, it still allows for a sig-
nificant margin of error. Furthermore, although the
audiogram classifier developed by Crowson et al. [8)
demonstrated the highest accuracy thus far, it is not
suitable for analyzing the original tabular data gen-
erated by tonal audiometry, as it is designed only
for image classification, Prior to classification, the
datasets must be transformed into a specific format
of audiogram images. Although audiograms gener-
ally have a similar structure, those produced by dif-
ferent tools can significantly differ in form and con-
tent, Some audiometry software generates individual
audiograms for each ear, whereas others combine the
data from both into just one audiogram. This poses
a considerable difficulty when attempting to analyze
all cases in a comprehensive manner. Hence, an image
classifier is pot suitable as the central component of a
flexible system for categorizing pure tone audiometry
results,
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In addition, the aforementioned studies which
attempted to create hearing loss dlassifiers were con-
ducted using very small datasets. The sample sizes
in the studies conducted by Elbag: and Obali [7] and
Crowson et al, [8] ranged from 200 to 1007 test
results, respectively. With larger datasets, Al models
can effectively capture a greater number of unique
cases of hearing loss, resulting in more unbiased out-
comes.

3. Methodology

The objective of this study was to evaluate the
effectiveness of several artificial intelligence (Al) tech-
niques in classification of pure tone audiometry data,
The performance of different algorithms was evalu-
ated by means of the accuracy with which each sample
was classified as sensorineural hearing loss (S), mixed
hearing loss (M), or conductive hearing loss (C) by
each method,

3.1, Data

The study employed a dataset consisting of 4007
samples, which included the results of pure tone
audiometry tests conducted by doctors at the Depart-
ment of Otolaryngology of the University Clinical Cen-
tre in Gdansk between 2017 and 2021, Figure 1 illus-
trates the distribution of the data across different
classes. There are 674 examples of conductive hear-
ing loss, 1594 instances of mixed hearing loss, and
1739 samples of sensorineural hearing loss. The class
imbalance arises from the patient treatment proto-
cols implemented by medical institutions. Conductive
hearing loss typically results from pathology affect-
ing the ear canal, obstructing the passage of air. The
diagnosis of this condition is usually made with an
otoscope during the initial examination of the patient,
thus eliminating the requirement for a pure-tone
audiometry test.

Each patient contributed a maximum of two exam-
ination results, with one result assigned to the left ear
and the other to the right ear, therefore eliminating
any data redundancy for the same patient and assur-
ing a sufficient diversity of data.

The hearing of the patients was assessed using
pure tone audiometry in accordance with the guide-
lines set forth by the American Speech-Language-
Hearing Association (ASHA) [10]. Every experiment
was performed within soundproof enclosures (ISO
8253, IS0 8253). The TDH39P headphones were used
for air conduction testing, while the Radioear B-71
bone-conduction vibrator was employed for bone con-
duction testing.

i
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. Figure 1. The class proportions in the input dataset

Alongside an audiogram, which s a standard visual
representation of pure-tone audiometry test findings,
audiology software produces XML files that contain
comprehensive data on the tonal points in the audio-
gram. This study employs XML files containing raw
audiometry data, concentrating on five fundamental
frequencies (250 Hz, 500 Hz, 1000 Hz 2000 Hz and
4000 Hz) acquired using both bone as well as air
conduction.

3.2. Dataset Expansion

Because the size of the training dataset Is rather
small for machine learning standards, during the pre-
sented research this database was expanded through
the application of a conditional generative adversarial
network [11]. A generative adversarial network (GAN)
Is a deep learning network that has the ability to
produce data that closely resembles the properties of
the training data it was provided with, A conditional
generative adversarial network (CGAN) is a variant
of the GAN architecture that incorporates labels as
additional information during the training phase. A
CGAN comprises a pair of interconnected networks
that undergo joint training:

1) Generator—this network takes a label and a ran-
dom array as input and produces data that has
the same structure as the training data samples
associated with the given label.

2) Discriminator—this network aims to categorize
observations as “real" or “generated” by using
labeled batches of data that include observations
from both the training data and the generated data,
In order to train a conditional GAN, it is necessary

to concurrently traln both networks with the objective
of optimizing the performance of both. This invelves
training the generator to produce data that deceives
the discriminator, while simultaneously training the
discriminator to accurately differentiate between real
and created data.

This research used CTAB-GAN [12] to augment
the dataset by a lactor of two, The CTAB-GAN is an
expanded version of the initial research on CGAN for
tabular data [13), enabling the handling of imbalanced
data,

3.3, Preprocessing

In the first stage, feature scaling was utilized as
a data preparation technique for standardizing the
values of features in a dataset to uniform scale. As
mentioned in the literature | 14, 15|, data standardiza-
tion is advantageous in terms of enhancing efficiency
throughout the training phase. This study used the
widely used Z-Score (1) standardization approach:

1)

where x Is the raw score, ¢ Is the mean and o s the
standard deviation.
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In addition, two more standardization formulas,
MinMax (2) and MaxAbs Scaler (3), were tested on
deep learning networks

X —min

Ziminen = max —min 2
X
Zmaxaps = [max| 3)

where x is the raw score, min is the minimum value
of the feature and max is the maximum value of the
feature,

3.4. Machine Learning Models

The research was initiated by evaluating the per-
formance of various machine learning classification
methods, Including random forest (RF), Gaussian
Naive Bayes, support vector machines (SVMs), logis-
tic regression, stochastic gradient descent (SGD), K-
nearest neighbors (KNN) and decision tree (DT). The
tabular data format was used as the input for all the
described algorithms,

All algorithms have been tested with different pre-
processing methods, both on the initial as well as
expanded dataset.

3.5. Machine Learning Models

The subsequent stage of the investigation entailed
evaluating the following ANN architectures; convolu-
tional neural network (CNN), recurrent neural net-
work (RNN) and feedforward neural network (FNN),
Furthermore, two of the most widely used RNN con-
cepts, namely long short-term memory (LSTM) and
gated recurrent unit (GRU), were evaluated, Both
LSTM and GRU attempt to overcome the problem of
vanishing gradients by introducing data flow control
mechanisms [16].

Previously, these methods had been employed to
classify relevant medical data [17,18].

3.6. Evaluation Process

The performance of all tested models was assessed
with the use of K-fold cross-validation, This pro-
cess entailed partitioning the dataset into K sub-
sets, referred to as folds, where K-1 subsets were
allecated for training purposes and one subset was
reserved for validation, Following this, the subsets
have been sequentiaily rotated in subsequent tests,
which enabled a more precise evaluation of the best,
worst, and average performance of the classification.
Inthe presented work the value of K was established at
10 in accordance with the literature standard and the
scale of the dataset. Thus, the proportion of training
to testing datasets is ten percent to ninety percent.
During the evaluation of models, the default 10-fold
set was decreased to 90%, with the remaining 10%
forming a dedicated test dataset. This has been done
to ensure that the performance of models trained with
and without data generated with the use of CGAN can
be effectively compared.

The general workflow of the presented study Is
shown in Figure 2.
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Figure 2, The workflow of the presented research into
application of machine learning methods for the
dassification of hearing loss types based on pure-tone
audiometry data

3.7. Evaluation Parameters

In addition to traditional measures such as accu-
racy, the presented research also employed precision-
recall metrics derived from a confusion matrix [19]
as well as receiver operating characteristics (ROC)
curves which encompass the pertinent area-under-
the-curve {AUC) data,

These curves effectively demonstrate the discrim-
ination performance of the evaluated models by com-
paring true positives and false positives. Further-
more, in addition to evaluating the efficacy of binary
classification models, the receiver operating charac-
teristic (ROC) curve and the area under the ROC
curve (ROC AUC) score are valuable Instruments for
assessing multiple classification challenges. The cho-
sen approach is OvR, an acronym for “one versus the
rest,” which assesses multiclass models by comparing
each class to the others simultaneously. In this case,
one class Is designated as the "positive” class, while
the remaining classes are designated as the "negative”
class. This transforms the output of multiclass classi-
fication into binary classification, enabling the appli-
cation of established binary dassification metrics to
evaluate this situation [20].
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Table 1. Comparative analysis of performance outcomes of machine learning models without GAN
Algorithm | Gaussian | K-Nearest | Logistic Support Stochastic Decision Random
Nalve Neighbors = Regression Vector Gradient Trees Forest
Bayes Machines Descent »
~ Accuracy 62.34% 77.02% 82.18% 85.15% T4.74% 80,09% B303%
[+ 12%) (+ 9%) (£ 9%) (£ 6%) (£ 9%) (£ 4%) (£ 4 %)
Precision 97.02% 97.34% 97.92% 97.84% 97.91% 97.65% 97.62%
(£ 4%) (4 39%) (£ 3%) (£ 3%) (4 3%) (£ 3%) [+ 3 %)
Reeall 62.34% 77.02% 82.18% 85,15% 74.74% 80,09% B3.03%
[+ 12%) (+ 9 %) (+94%) (% 6%) (£ 9%) (£ 4 %) [+ 4 %)
F1 74.68% 84.75% #B.36% 9031% H3.76% B7.36% BY.12%
(£ 7%) [+ 8%) (L 8%) (£ 5%) (£ 79%) (£ 4%) (L 4%)
Table 2. Comparative analysis of performance outcomes of machine learning models with GAN
Algorithm  Gaussian K-Nearest Logistic Support Stochastic Decision Random
Nalve Neighbors = Regression Vector Gradient Trees Forest
Bayes Machines Descent
Accuracy 61.99% 75.14% 86.67% 89,52% B0.68% I 7931% 83,50%
(£ 10%) U (£ 7%) ¥ (£ 5%) 1t [£4%)0 (£ 13%) 1t (£2%)0 (+4%)0
Precision 97.00% 97.32% 98.37% 98.18% 97.72% 97.66'% 97.66%
(£4%)08 (+4%)4 (£2%) 1 [+ 2%)0 (+3%)0U (£3%]1 (£3%) 0
Recall 61.99% 75.14% 86.67% 89.52% BO.68% 79.31% 83.50%
(LI0%)U (£ 7%)0 (£5%)1 [+ 4%)0 {(£13%)8 | (£2%)0U (L4%) ¥
Fl1 T4.56% B3.86% 91.75% 93.22% B7.01% 86.91% 89.45%
[+6%)4 (+6%) 0 (+4%)0 (+39%)1 {(£11%)0 (+3%)4 (+4%) 0
4, Results and Discussion The results In Table 2 depict the outcomes

The initial step of the presented study involved
evaluation of the classification performance offered
by a collection of machine learning algorithms. The
outcomes have been evaluated in relation to accuracy,
precision, recall, and F1 score, Macro averaging in
10-fold cross validation was used to offset the class
imbalance in the training dataset. The test results are
presented in Table 1.

The support vector machine classifier has
achieved the highest level of success among machine
learning algorithms, with an accuracy rate of 85.15%,
The algorithm achieved the highest ratings in
precision, recall, F1, and AUC. In close pursuit of SVM,
the logistic regression and random forest models both
exceeded 82% in terms of accuracy.

Stochastic gradient descent achieved an accu-
racy of 74.74%, while K-nearest neighbors obtained
77.02%, which puts both of them well below the top
three algorithms, but still significantly higher than
Gaussian Naive Bayes which only reached 62.34%
accuracy.

Tree-based classifiers have demonstrated superior
accuracy stability in 10-fold validation. The decision
tree classifier exhibits a standard deviation of roughly
4%, while the random [orest dassifier has a stan-
dard deviation of around 4.65%. In contrast, all other
models have a standard deviation over 6%. The issue
of imbalanced data, which is certainly visible in this
study, is one of the factors that might adversely affect
the effectiveness of machine learning algorithms, as
exemplified by the subpar results of Gaussian Naive

obtained by augmenting the training set using CTAB-
GAN, The application of CGAN yielded positive out-
comes for only 4 out of the 7 algorithms that were
examined. Doubling the size of training data did not
Influence the accuracy of Naive Bayes and decision
tree, which produced results differing by less than 1
percentage point. The KNN model exhibited a slight
reduction in overall classification performance, losing
less than 2 percentage points in accuracy and recall
On the other hand, the generation of additional train-
ing data resulted in increasing the classification accu-
racy level in SVMs and logistic regression by approxi-
mately 5%. The largest increase, amounting to an 8%
increase, is shown in the SGD results as compared to
those without CGAN,

This being said, the increase in accuracy, as well
as improvements in other measures such as preci-
ston, recall, and F1 score shown hy all three algo-
rithms could be considered to be within their respec-
tive margins of error. In order to sidestep the issue of
increased margins of error in the expanded datasets,
the classification accuracy of selected methods was
tested again on the dedicated test dataset, which had
been extracted from the original data before training.
Results of these tests are presented in the form of
confusion matrices displayed in Figures 3, 4, 5 and
Table 3. The matrix on the left depicts the outcomes
obtained without the use of CGAN, while the matrix
on the right illustrates the results following the imple-
mentation of CGAN, The 5, M, and € Indices represent
sensorineural hearing loss, mixed hearing loss, and
conductive hearing loss, respectively.
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Figure 3. Confusion matrices of the logistic regression model trzined without CGAN (left) and with CGAN (right)
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Figure 4, Confusion matrices of the stochastic gradient descent model trained without CGAN (left) and with CGAN (right)
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Figure 5. Confusion matrices of the support vector machines model trained without CGAN (left) and with CGAN (right)

Comparing the findings obtained from 10-fold
cross valldation to those obtained from a dedicated
test, there is a similar improvement (Table 3). Logistic
regression, support vector machines, and stochastic
gradient descent exhibit considerable enhancements
in accuracy, similar to the outcomes shown in 10-
fold (Table 2). The results for Gaussian Nalve Bayes
and random forest show minimal variation, with a
difference of less than one percentage point The most
significant decline was observed in the performance
of KNN and decision trees, with a difference of 1.24%,
which s still comparable to the results obtained from
the 10-fold analysis.

The improvements brought by artificially expand-
ing the training dataset are best visible in the confu-
sion matrices presented in Figures 3, 4, and 5.

In the case of the logistic regression model results
depicted In Figure 3, Itis noteworthy that, subsequent
to the adoption of GAN, the number of conduc-
tive hearing loss cases (C) incorrectly labeled as
sensorineural and mixed has demonstrated a drop
of 30% and 50%. respectively, The improvements
to classification of the remalning types are much
smaller but persistent, with only the dassification
of mixed hearing loss as conductive showing no
improvements, The performance of Stochastic Gradi-
ent Descent model has shown the largest improve-
mentsafter training with GAN-derived data (Figure 4).
The number of mixed hearing loss cases incorrectly
classified as sensorineural decreased by 73% (from
33 to 9), while the number of conductive hearing loss
cases labeled as sensorineural was reduced by 25%
(1210 9).
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Table 3. Comparison of the accuracy of the tested
machine learning models trained with and without the
use of CGAN, analyzed on the dedicated test dataset

Algorithms Default Training
training with CGAN
(acc) (acc)
Gaussian Naive Bayes 63.09% 63,59% #
K-Nearest Neighbors 80. 29% 79.05% U
Logistic Regression 89.77% 9251% %
Support Vector 90.27% 93.04% 2
Machines
Stochastic Gradient 79.55% 85.53% *
Descent
Decision Trees 84.53% 83.29% 8
Random Forest 87.78% 88.02% #

At the same time, the number of sensorineural
hearing loss cases improperly recognized as conduc-
tive decreased by 29% (from 14 to 10) and the number
of mixed hearing loss datasets incorrectly labeled as
conductive decreased by 73% (from 11 to 3). How-
ever, these gains are offset somewhat by a reduction in
the accuracy of mixed hearing loss classification. After
training on data generated by GAN, SGD has shown
an increased tendency to label mixed hearing loss
as either sensorineural (22 cases versus 11, a 100%
Iincrease) or conductive (5 cases versus 1, a 400%
increase). This being said, the total number of prop-
erly recognized datasets still shows a considerable 8%
Increase (343 from 319).

Out of the three analyzed machine learning mod-
els, support vector machines (SVMs) is the only one
which shows consistent improvements to all cases
of dassification Inaccuracy after training with GAN-
derived data. The number of sensorineural hearing
loss cases iImproperdy labeled as mixed and conduc-
tive is reduced by 38% (16 to 10) and 50% (2 to 1),
respectively, The number of mixed hearing loss cases
improperly labeled as sensorineural and conductive is
reduced by 14% (7 to 6) and 50% (2 to 1), respectively.
Finally, the number of conductive hearing loss cases
incorrectly recognized as sensorineural and mixed is
reduced by 50% (4 to 2) and 13% (8 to 7), respectively,
These improvements increase the total number of cor-
rectly classified datasets from 362 to 375,

Given that in the current state of the art, deep
learning models surpass the classification accuracy
of all machine learning methods, the presented study
also evaluated the performance of several deep learn-
ing architectures, These include feedforward neu-
ral networks (FNN), convolutional neural networks
(CNN), and recurrent neural networks (RNN), which
encompass gated recurrent units (GRU) and long
short-term memaory (LSTM). The evaluation was per-
formed using a 10-fold cross-validation method-
ology, and Involved assessment of the Impact of
implementing different data standardization meth-
ods. The results of these experiments are displayed in
Tables 4-6.

Table 4. Classification performance of deep learning
models using Z-Score normalization

FNN | CNN | RNN
9306% | 93.76% | M4.07%
(4 19%) | (4196 | (2 1%)
93.10% | 93.82% | 94.17%
(£ 1%) | (£ 19%) [ (4 1%)
93.06% | 93.02% | 94.07%
(£ 19%) | (2 19%) | (+1%)
Fi 5309 | 93750 | 24.08%
(+19%) | (£ 19) [ (+1%)

IST™M | GRU
95.63% | 9383%
(4 1%) | (2 1%)
95.66% | 9394%
[ 1%) | (£ 1%)
95.63% | 9383%
(£ 3%) | (£1%)
95.63% | 9383%
[+ 1%) | (+1%)

Accuracy

Precisson

Recall

Table 5, Classification performance of deep learning
models using MinMaxScaler normalization

FNN NN RNN | LSTM GRU
66.44% | 68.06% | 68.23% | 67.46% | 6895%
(£3%) | (£2%) | (£2%) | (L 1%) | (&£1%)
Precision | 66.43% | 57.300 | 57.93% | 57.60% | S8.11%
(£3%) | (£39%) | (£3%) | (2%} | (22%)
66.43% | 68.00% | 68.23% | 67.46% | 6RISH
| (E3%) | (229%) | (+2%) | (£1%) | (& 1%)
Fi 6009% | 6183% | 68.23% @ 6L16% | 6264%
(£ 3%) {£2%) | [£2%) | (*2%)

Accuracy

Recall

(= 2%)

Table 6. Classification performance of deep leaming
models using MaxAbsScaler normalization

FNN NN RNN  LSTM | GRU
39.78% | 39.78% | 39,789 | 3I078% | 39.78%
(£ 19%) | (41%) (£ 1%)
1584% | 1585% 1585%
(2 1%) | (+1%) (£ 1%)
39.78% | 39.78% 378%
(£ 1%) | (£ 1%) (£ 1%)
Fi 2266% | 22.66%

2266%
(£ 1%) | (21%) (£ 1%)

Accuracy
(4 14%)
15.85%
{£ 1%)
15.88%
(£ 1%)
22.66%
(£ 1%)

Precision

Recall

As it can be seen in Tables 4-6, normaliza-
tion strategy plays a fundamental part in obtaining
good classification performance using deep learn-
ing models. Undoubtedly, the Z-Score normalization
method delivered cutstanding performance across all
architectures (Table 4), These classification accuracy
results are on average 35% better than in the case of
MinMaxScaler (Table 5) and about 120% better than
those produced by MaxAbsScaler (Table 6), which is
clearly not suitable for audiometry data.

Concerning the results obtained by all networks
with the Z-Score normalization method, LSTM exhib-
tted the highest performance In terms of accuracy,
recall, precision and F1 score. Specifically, it achieved
an accuracy of 95.63% and an F1 score of 95.63%. It
was predictable that the input datasets, being sequen-
tial data, would be well-suited for the RNN family
of models, which Is known for its strength in han-
dling this type of data [18]. The results appear to
validate the conclusions of a previcus study [21]
which assessed several neural network configura-
tions to create a binary classifier for distinguishing
between pathological hearing loss and normal hear-
ing using similar data. Said investigation also con-
cluded that the LSTM architecture yielded the most
favorable results. The second-best results have been

69



Jourmnal of Automation, Mobile Rob

and Intelligent Svstems

VOLUME 1S, N°3 2004

More-averigng One-v-fest
o

o /‘

= Femtttarmard Mot Netwark JAUC = 0.91)
s~ e Camorabons! Hewrsl Netwan (A « 03
s —— FeraTent Mesrs Setworss (AUC = 0 94)
Vd v Long Sbart Term Memery Netactha JAUC = 894
L Gatws Bocutent Lt Mdianeis (AUC = 09}
e hants el (M = 053

a9

e nz 0. Ll m N
Fabin atar A

Figure 6, ROC curves with the AUC parameters for
tested deep learning models during 10-Fold validation

achieved by the simple RNN model, with a difference
of approximately 0.6%. While the difference is within
the margin ol error, this result is somewhat expected,
constdering that LSTM models typically offer superior
performance over simple RNN models. The third place
of the CNN model, which is prominently used for pro-
cessing raster data, could be explained by the fact that
each dataset in the current study Is represented by a
two-dimensional table which somewhat resembles a
very small raster.

The dassification performance of the presented
deep learning models (Table 4) is visualized in Fig-
ure 6 in the form of ROC curves with correspond-
ing AUC parameters. These illustrate the discrimina-
tory capability of the evaluated deep learning models
quantified by the ratio of true positives to false posi-
tives.

All CNN, RNN, LSTM, and GRU models have the
same AUC parameter score of 0,94, With an AUC value
of 0.91, the FNN model is conspicuously inferior to the
others,

In general, the scaling technique has a substantial
impact on the performance of classification models.
Furthermore, this impact may vary depending on the
specific types of models employed, such as monolithic
and ensemble models [22].

Based on these results, all subsequent tests were
performed with the use of Z-Score normalization, as it
is the sole method that yields outcomes comparable to
the state-of-the-art.

The final step of the presented research analyzed
the performance of deep learning methods trained
on the dataset augmented with the use of CGAN, The
results are displayed in Table 7.

Table 7. Performance of deep learning models trained

on data augmented with CGAN
{ FNN NN RNN  LSTM GRU
Accuracy | 90.64% | 90719 | 94.92% | 9B57T% | 95.41%
[+19%) | (£1%) | (20.5%)1 (£0.5%) | (£05%)
L) 3 | n T
Precision | 9088% | 90.95% | 94.92% | 9BSEY | 95.44%
(£1%) | (£1%) [(£05%) | (+0.5%) | (+0.5%)
L) 1} ] | Lj T
Recall G064% | 90.71% | 94.92% | 9B57% | 95.41%
(£1%) | (£1%) | (£D5%) | (£05%) | (+0.5%)
[] ] nooon fr
i W0L0% | 90.74N, | 94.92% | IB57TY | 9541%
(£1%) | (£1%) | (£0.5%) | [£03%) | (£0.5%)
[ 3 S T

Table 8. Comparison of the performance of deep
learning models trained with and without the use of
CGAN, analyzed on the dedicated test dataset

Models | Default training Training with
(acc) CGAN (ace)
FNN 95.48% 9L66% b
CNN 92.01%: 88.19% 8
RNN 93.40% [ A%
LST™ 94.79% 97.56% 1
GRU 92.70% 92.70% <
PN 95.48% S166%8

As it can be seen In Table 7, training on the
expanded dataset has significantly increased the per-
formance ol certain deep learning models while
impacting the performance of others, which mirrors
the situation with machine learning algorithms. In
particular, the classification accuracy of recurrent net-
works has increased by nearly 1% in the case of RNN,
around 1.5% for GRU and nearly 3% for LSTM. On the
other hand, the classification effectiveness of FNN and
CNN has reduced by nearly 3%. This being said, con-
sidering the potential impact of testing the networks
on CGAN-augmented data (which has been shown pre-
viously for machine learning methods), a subsequent
analysis was conducted using the dedicated test set.
The results of this test are presented in Table 8.

Similarly to the case of machine learning models,
testing on the dedicated dataset yields similar over-
all results, however with somewhat different perfor-
mance values. The performances of LSTM and RNN
models have shown an increase, whereas those of
FNN and CNN experienced a decline, An exception
to this correlation is the GRU model, as its findings
remain consistent regardless of the approach used.
The LSTM model achieved the highest accuracy, reach-
ing 97.56%. This result is lower by one percentage
point compared to the figure reported In Table 7 for
the 10-fold with GAN approach.
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In general, artificial neural networks exhibit supe-
rior performance to deep learning models when com-
paring the two, However, the utilization of CGAN for
training machine learning methods enables some of
them to come closer to the accuracy delivered by
the less performant deep learning methods. Still, the
optimal outcomes are achieved by RNN-based models
with Z-Score normalization and GAN augmentation, in
particular simple RNN and LSTM models.

The achleved results significantly exceed those
of prior investigations (conducted by Elbagsi and
Obali [7]), which utilized a Decision Tree to classify
raw audiometry data with an accuracy of 95.5%. Inter-
estingly, when evaluated on the presented data, the
same Decision Tree algorithm achieved an accuracy of
approximately 83% on the dedicated test dataset. Yet,
the validity of the cited findings may be questioned
due to the limited sample size of just 200, which is
significantly smaller than the dataset employed in the
present study. Moreover, the results cannot be directly
compared because the cited study was conducted on
four classes (as opposes to three classes in the pre-
sented work), which included individuals with normal
hearing and there is no data regarding class distribu-
tion nor the method used for cross-validation.

At the same time, the greatest classification accu-
racy of 97.56% attained by LSTM on the dedicated
test dataset is comparable to the present state of the
art in classifying pure tone audiometry test results
(97.5%) reported by Crowson et al. [8] for raster
datasets. Similar to that work, training data augmen-
tation has provided significantly better classification
results (although the presented work augmented tab-
ular data, whereas Crowson et al. augmented raster
data). Again, these results cannot be directly com-
pared due to the lower number of classes (three
instead of four) used in the presented study, Moreover,
Crowson etal. [B] classified raster audiograms instead
of actual test results, and images produced by different
types of audiometry software vary significantly, These
variations can range from minor differences in the
color of the plot and the size of the measurement
point indicators to more significant changes that may
adversely affect the performance of automated classi-
fiers (e.g., presenting outcomes from both ears on a
solitary plot). In order for image-trained classification
models to be effective with all types of audiometry
data, it is necessary to create a comprehensive audio-
gram database. This would include collecting and clas-
sifying thousands of audiograms created by different
audiometry applications. By contrast, a classifier that
utilizes unprocessed audiometry data offers greater
versatility and broader potential for use in the clinical
setting.

On the whole, despite attaining a relatively high
classification accuracy of 97.56%, the presented
LSTM-based classifier may not be adequate for clinical
use due being trained on data augmented with CGAN.
While this data has significantly improved the perfor-
mance of certain classifiers, it has also decreased the
performance of other methods, suggesting that not all
of the generated datasets may properiy reflect real-
world audiometry data. Therefore, the creation of a
reliable and precise classifier for raw audiometry data
necessitates the establishment of a training dataset
that is sufficiently large and representative, while also
being closely controlled by medical experts.

5. Conclusion

The objective of the presented study was to assess
the efficacy of different artificial Intelligence algo-
rithms in classifying discrete tonal audiometry data
series into three specific types of hearing loss: con-
ductive, sensorineural, and mixed. For this purpose,
the study involved testing machine and deep learn-
Ing models comprised of Gaussian Naive Bayes, sup-
port vector machines, random forest, K-nearest neigh-
bors, logistic regression, stochastic gradient descent,
decision trees, feedforward neural network, convolu-
tional neural network and recurrent neural network
(including long short-term memory and gated recur-
rent unit). The models indicated above have been
trained and assessed using 4007 sets of tonal audiom-
etry data, which had been analyzed and labeled by
audiologists who are experts in the field.

Furthermore, the investigation also explored the
impact of training dataset augmentation using a con-
ditional generative adversarial network and examined
how different standardization procedures affect the
effectiveness of deep learning architectures.

The best overall results were obtained with the
long short-term memory model, which attained the
maximum classification accuracy of 97.56% with Z-
Score normalization and CGAN data augmentation, On
the whole, all deep learning models achieved substan-
tially better classification results than machine learn-
ing algorithms when trained on the standard dataset,
but training on the GAN-augmented dataset allowed
support vector machines to achieve results similar to
that of less performant deep learning models.

Thus, on the one hand the study’s findings con-
firmed the overall ranking of classification perfor-
mance that earlier research had established, On the
other hand, the findings also suggest that the classifi-
cation accuracy levels previously documented in liter-
ature, which were attalned using considerably smaller
datasets, might have been overly sanguine.
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Finally, the results of the presented research indi-
cate that using a GAN augmentation of training data
may produce very positive results, however {as exem-
plified by the performance of the stochastic gradient
descent model) unsupervised generation of input data
may not always lead to optimal outcomes. In this con-
text, future work could concentrate on enhancing the
accuracy of the RNN-based classifier and increasing
the size of training dataset as well as designing a GAN
model which is more efficiently tuned for producing
properly labeled tonal audiometry test data.

In general, the demonstrated outcomes indicate
that the proposed Al-driven pure tone audiometry
data classifier may have practical implications in clin-
ical settings, functioning as either a classification sys-
tem for general practitioners or a support system for
professional audiologists. In both scenarios, the imple-
mentation of the classifier has the potential to mini-
mize human error, enhance diagnostic accuracy, and
reduce the waiting time for patients to receive their
diagnosis.
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Hearing problems are commonly diagnosed with the use of tonal audiometry, which measures

a patient’s hearing threshold in both air and bone conduction at various frequencies. Results of
audiometry tests, usually represented graphically in the form of an audiogram, need to be interpreted
by a professional audiologist in order to determine the exact type of hearing loss and administer
proper treatment. However, the small number of professionals in the field can severely delay

proper diagnosis, The presented work proposes a neural network solution for classification of tonal
avdiometry data, The solution, based on the Bidirectional Long Short-Term Memory architecture, has
been devised and evaluated for classifying audiometry results into four classes, representing normal
hearing, conductive hearing loss, mixed hearing loss, and sensorineural hearing loss. The network was
trained using 15,046 tast results analysed and categorised by professional audiclogists, The proposed
model achieves 99.33% classification accuracy on datasets cutside of training. In clinical application,
the model allows general practitioners to independently classify tonal audiometry results for patient
referral. In addition, the proposed solution provides audiologists and otolaryngologists with access

to an Al decision support system that has the potential to reduce their burden, improve diagnostic
sccuracy, and minimise human error,

Keywords Classification, Bi-LSTM, Hearing loss, Tonal audiometry, Audiogram, Al decision suppoet system

Hearing s a key sense in human daily existence, allowing for connectivity with the outside world in a manner
that none of our other senses can accomplish. Aside from enabling efficient communication with others, good
hearing is cruclal for personal safety, e.g. when crossing the steeet on foot, operating a vehicle, or responding
10 a fire alarm, frequently enubling detection of a potential threat before it becomes visible. Other benefits that
good hearing may bring to quality of life, such as listening to music, television and radio, also should not be
overlooked, Extreme cases of communication difficulties, resulting in a decline in quality of life. may lead to
psychlatric disorders such as depression’.

According to the World Health Organization (WHO), hearing loss currently affects more than 1.5 hillion
people worldwide, of whom 430 million have moderate or higher levels of bearing loss in the better hearing ear.
WHO predicts that by 2050, nearly 2.5 billion people will have some degree of hearing loss, with at least 700 mil-
lion requiring rehabilitation services, Fortunately, early detection and efficient management can significantly
mitigate numerons Instances of hearing Impairment, particularly those associated with childhood hearing loss.
Medical and surgical methods can be effective in the treatment of ear diseasses, in many cases leading to restora-
tion of original hearing quality’,

Hearing loss is predominantly determined with the use of pure-tone audiometry, typically performed while
seated in a sound-proot chamber., It involves delivering a series of increasingly-intense pure tones at predeter-
mined threshold levels, typically via headphones, and determining the auditory threshold for air and bone con-
duction. Alr conduction determines the function of the complete auditory oegan, from the auricle to the temporal
lobe hearing centres, Any level of damage to this system decreases the air conduction curve, Bone conduction
examines the organ of hearing from the level of the bony capsule of the cochlea, bypassing the conduction of
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sound through the outer and middle ear. It serves as an alternative pathway for sound conduction, although it is
not as significant as air conduction. Using pure-tone audiometry, which assesses both alr and bone conduction,
it is possible to identify the type of hearing impairment. Conductive hearing loss is usually caused by diseases of
the external auditory canal and/or middle ear. Sensorincural hearing loss occurs due to damage to the sensory
cells andlor nerve fibers of the inner eur’. Mixed hearing loss is the result of both sensorineural and conductive
hearing loss'. Hearing foss can be unilateral or bilateral, sudden or chronie, and can range in severity from mild
to profound. Hearing impairment is common, particularly among patients with aural disease and the elderly.
The majority of hearing losses In clinical populations are sensorineural and mixed’, While the sensorineural
comp are rarely curable, accurate diagnosis is a major impediment in successful treatment, Audiologists,
who are necessary for proper execution and interpretation of tests, are in short supply globally. Among low-
income countries, in particular, approximately 93% have fewer than one audiologist per million, Even in nations
with relatively high numbers of practitioners in the fiedd of ear and hearing care, inequitable distribution and
other factors can limit access to these specialists’, Artificial lnlclhgmcc (Al) has the potmml to address this

issue, given the disparity between the supply and d d for heari ialists. Alimpl algorithms that
allow computers to recognize specific data analysis patterns and draw conclusions. In the healthcare industry,
this software analyses human cognition to establish links between various types of and the subseq

medical outcomes, One of the most common uses of machine learming in medicine is the analysis of images
such as computed tomography (CT) and magnetic resonance imaging (MR} to detect various types of irregu-
larities, including tumours, ulcers, fractures, Internal bleeding etc., in order 1o provide crucial data for health
care specialists and their patients. As a result, Al assists radiologists in automating daily administrative duties,
Improves diagnostic accuracy, eliminates human error risks, and allows hers to conc te on complex
cases™ . This is also true in tonal sudiometry, where Al has been applied to the determination of edge frequency
of a high-frequency dead zone in the cochlea as well as to assistance in fine-tuning bearing aids to the client’s
preferences more precisely and efficiently’,

In the above context, this paper proposes a neural network model for dassification of hearing loss types for
discrete tonal audiometry data series, The primary objective was to obtain classification accuracy sufficient for
clinical application of the developed network, allvwing general practitioners to dassify tomal audiometry results
autonomously for further patient referral, This could result in bessening the burden on audiology specialists while
still ensuring that the final decision on diagnosis is made by a physician. For audiologists, the system might
climinate simple cases, allowing them to concentrate on the more complex ones, as well as enhance disgnostic
precision and prevent human error in daily practice. Furthermore, the aim is to exceed the current state-of -the-
art in classification of raw andiometry data, which currently achicves an accuracy rate of 95 5% through the
application of Decision Trees’.

The paper is structured as follows: the second section describes the materials and techniques used to train and
evaluate the classification model. Specifically, types of hearing loss are described in section “Hearing loss types’,
a literature review can be found in section “Automatic classification of audiometry data”, the dataset 1s described
in section “The tonal audiometry dataset’, ethics declarations are included in section *Ethics declarations” and
the study methodology is explatned in section “Methodology” The third section provides detalled results. The
fourth section discusses the obtained results and their comparison to the current state-of -the-art, Finally, the
fifth section presents the conclusions,

Materials and methods

Hearing loss types

According to the WHO, hearing loss may be classified as conductive, sensorineural or mixed”. In conductive
hearing loss, lesions develop in the conductive companent (outer and middle car). This type of hearing Joss is
characterised by good telephone speech comprehension, better hearing and speech discrimination in noise than
In stlence, improved speech comprehension after amplification, and preserved voice control. Conductive bearing
loss may be diagnosed on the basis of audiometric tests and otoscopy. In tonal audiometry, it is characterised
by a normal bone conduction, a lowering in the alr conduction curve, and the presence of an alr-bone gap, Le.
a 15-40 dB diflerence between the bone and air curves. Congenital deformities of the external and middke ear,
ofitis externa and otitls media, otosclerosis, injury of the external auditory canal, wax plug, obstruction of the
al:dhory tube, andd tumours of the temporal bone and nasopharynx are the most common causes of conductive

aring loss'".

Sensorineural bearing loss is a hearing impairment induced by inner ear and auditory nerve disordess. It can
be cochlear—caused by damage to the organ of Corti—or extracochlear—affected by damage o the auditory
nerve up to the cochlear nuclel. The characteristics of sensorineural hearing loss are: better hearing through
the air, impaired understanding of speech in noise, better hearing of low sounds, unpleasant perception of high
sounds, different perception of sounds in both ears, On audiometric examination, bone and air conduction curves
are at the same level, and there is no air-bone gap. The most common causes of sensorineural hearing loss with
cochlear localization are: hcarlng loss caused by ageing, anm' md chronic acoustic trauma, congcnltal defects,
skull base fractures, p drugs, ch apy, labyrinthitis, vascular disorders of the
Lnner ear, Ménidre's dtsmc oow.hlm otosclerosis, radiotherapy and metabolic disorders. Causes of sensorineusal
hearing loss with extracochlear and central location include presbycusis, multiple sclerosis, cranial trauma and
fractures, meningitis, cerebello-pontine angle turnours, brain tumours and cerebrovascular diseases'’,

Mixed hearing loss is a combination of sensori | and conductive hearing loss in a single car. It may be
the result of a single disease. such as otosclerosts or suppurative otitis media, or of the superimposition in one ear
of two or more of the diseases listed above. It is characterised by a dxmxing of the ludilory threshold for bone
conduction and air conduction with the existence of air-bone gap, impaired speech ¢ jon d

L L r
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on the sensory-nervous component. and an audiometric curves demonstrating less decreasing in the low tones
and more greater decreasing in the high tones.

Hearing impairment, particularly sensarincural hearing loss, is prevalent among the elderly and tends to
aggravate with age. Conductive hearing loss is typical of adolescents and adults of working age; if it worsens, it
does so very gradually, as in otesclerosis.

The described torms of hearing Joss are treated differently. In the conductive type, surgical treatment pre-
dominates: paracentesis, ventilation tube placement, myringoplasty, and tympanoplasty, The majority of cases of
sensorineural hearing loss are treated conservatively, as they resalt from sudden deafness, scute acoustic trauma
and multiple sclerosis. In those instances, rehabilitation with the use of a hearing aid often proves effective. In
specific cases, hearing rehabilitation must be combined with surgical treatment, as with cochlear implants, Mixed
hearing loss is treated based on its actiology, Stapedotomy is the surgical treatment for otosclerosts, whereas in
non-surgical cases hearing devices are fitted" .

Data selection criteria

The Inclusion and exclusion criteria for tonal audiometry data in the dataset were determined according to rules
given by Margolis and Saly". During the initial stage of the classification process, every audiometry test result
wus evaluated 1o determine if it met the minimum standards for inclusion in this study. Initially, a thorough
examination was performed to verify the existence of six octave frequencies, namely 250 Hz, 500 Hy, 1000 Hz,
2000 He, 4000 Hz 2nd 8000 Hz in air conduction. In the context of bone condition, the auditory thresholds for
four specific octave frequencies (500 Hz, 1000 Hz, 2000 Hz, 4000 Hz) were examined to determine thelr presence,
If any of these values were absent, the data was rejected. Furthermore, any sudiometry test result that satisfied
any of the following criteria was also eliminated:

®  Air conduction threshold is outside the range of = 10 to 110 dB HL (exceeding 230 Hz, when the limit is
90 dB HL);

®  Air conduction threshold is beyond the 0--30 dB range of the next lower frequency.

® Bone conduction threshold is beyond the range of - 10 to 60 dB HL (exceeding 250 He, when the limit i
40 dB HL):

o The bone-conduction threshold should fall within the range of 50 10 10 dB refative to the air-conduction
threshold at that frequency,

Classtfication of hearing loss types

Based on the latest (2021) WHO standards’, normal hearing is defined as an average value for the air and bone
conduction curve evaluated al 4 octave frequencies (0.5 kHz. 1 kHz, 2 kHz. 4 kHz) that is below 20 dB HL. These
guidelines are also in line with the 1996 International Bureau for Audiophonology criteria’, The air-bone reserve,
sometimes referred to as the alr-bone gap, was calculated by subtracting the individual values ol frequencies in
the air-bone conduction threshold for in 300 Hz. 1000 Hz, 2000 Hz and 4000 Hz. The present air-bone reserve
was determined to be 10 dB HL at three or more frequencies within the range of 500-4000 Hz or 15 dB HL for
single frequency within this range'’, The diagnosis of conductive hearing loss was made based on the existence
of bearing loss in the air conduction curve, normal values in the bone conduction curve and the presence of
air-bone reserve, The identification of sensorincural hearing loss was determined based on the ohservation of
hearing loss in both the air and bone conduction curve as well as the absence of air-bone reserve. The medical
diagnosis of mixed hearing loss has been established by notscing hearing foss in both the air and bone conduc-
tion curves, in addition to the presence of air-bone reserve. Table 1 provides s comprehensive list of the specific
criteria that were utilized to classtfy the audiogrms.

Automatic classification of audiometry data
In medical practice, the type of hearing impairment is determined from pure-tone audiometry test results
according to their configuration, severity, location of lesion (hearing loss type) and symmetry' ", The process

is performed by audiology specialists on the graphical repr tion of an audiometry test result, known as an
average valie Sor frogueccses of 500 average value Sor frocpaencres of 56
Nocroal hearing | 4000 1122 30 dB A0 p< 2040 abisence of sus 41r-Bone g
10 &5 across minimum three frequencies
A average valie for froguencies of 500 average value Sor frequoncies of 510 v
Condtive hearing loss 4000 o> 20 B 4000 Hi< 2040 15004000 Ha) or 15 B across one freguency
%0 4000 Ha)
average vale or froguencies of 500 average value for freguoncies of 510
4000 Ha = 20 db 4000 Mz 2 20 d
Sensocineural hearing Josr | and and aheence of s wir-bone gap
average valie for froguessan of 4000 average value Sor frequencies of 4000~
#000 He 2 20 dH 6000 He o 20 dB
Roekckon low average vale for freguencies of 500 average value for freguoncies of 510~ "2:]’ _m;;umll:gthm f"’";m”
Siimad hetring 4090 11z 2 20 dB 4000 x> 20 dR oo el

Table 1. Classification criteria of hearing loss types.
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audiogram. The site of lesion is determined by air and bone conduction thresholds of the audiogram, whereas
the configuration is determined by shape. The severity is determined by the degree of hearing loss,

The subject of sutomatic audiometry data classification has been under investigation for a long time. Over
the last decade, there have been a number of attempts at devising an automated method of classification that
would be accurate enough to warrant practical application.

The first attempt in this regard was made by Cheng-Yung Lee et al. ™, who proposed a statistical dassification
system of audiogram shapes in an effort to enhance and integrate shape recognition across clinfcal settings. Based
on 1633 andiograms, eleven audiometric shapes were classified using K-means cluster analysis. The authors
anticipated that, in the future, the dassification of audiogram shapes would result in a more efficient infrastruc-
ture for diagnosing hearing loss.

Farther work may be divided into two thematic groups: classification of audiogram shapes for the purpose of
determining the instial configurations of hearing aids'™™ and diagnosing the type of hearing loss.

Chelzy Belitz et al.”" combined unsupervised and supervised machine learning techniques for mapping
audiograms 10 a limited number of hearing aid configurations. When mapping a single configuration to cach
audiogram, the best results were achieved with the Multi-layer Perceptron model at 64.19% accuracy. When
mapping two configurations to each audiogram, the chance that at least one is correct increased 10 92.70%.

Charih et ol presented their Data-Driven Annotation Engine, a decision tree based asudlogram multi-label
classifier which considers the configuration, severity and symmetry of participant’s hearing losses and compared
1t to AMCLASS", which fulfils the same purpose using a set of general rules. Dataset used in this study con-
tained 270 distinct audiograms with seven tested frequencies at 500 Hz, 1,000 Hz, 2,000 Hz, 3,000 Hz, 4,000 Hz,
6,000 Hz and 8,000 Hz. However, bone condaction information is not included in the data set. Three Hcensed
audiologists rated the method’s accuracy at approximately 90 percent,

Abecr Elkhouly et al.” proposed a machine learning solution to classify audiograms for the purpose of con-
figuring hearing aids based on their shapes using unsupervised spectral clustering, normalization, and multi-
stage feature selection on a dataset of 28 244 audiograms. The authors normalized the data using 20 different
normalization methods to increase the training data size in bullding a credible model, and then selected 10
nonmalized data sets to train the model. Firstly, the data was divided into 10 clusters, then cassified using fine
K nearest neighbour dassifier with 95,4% accuracy.

In comparison Lo the subject of automated conliguration of beuring aids, the problem of hearing loss type
classification has been given considerably lm attention,

In this regard, Elbagi and Obali® da wson of | ches to hearing loss determination,
Including Deciston Tree C4.5 (DT- 148). Naive lhy\-s and Neural Network Multilayer Perceptron (NN} model.
The study was conducted on a dataset containing 200 samples divided into four categories, including normal
hearing, conductive hearing loss, sensorineural hearing loss, and mixed hearing loss. Input data was formatted
as a series of ic values rep ing Decibels corresponding Lo constant frequency levels (750 Hy. 1 kHz,
1.5 kHz, 2 kHz, 3 kHz, 4 kHz, 6 kHz, 8 kHz). Classification algorithms have been implemented using Weka soft-
ware, resulting in 95.5% accuracy in Decision Tree, 86.5% accuracy in Naive Bayes, and 93.5% accuracy in NN,

More recently, Crowson et al.” adopted the ResNet models to classify sudbogram images into three types of
hearing loss (sensorincural, conductive or mixed) as well as normal hearing using a set of training and testing
images consisting of 1007 audiograms. The model was fed by 500 x 500 pixel images of static audiogram plots
that had been pre-transformed. | d of fully training the classifier, the authors applied transfer learning to
well-established raster classification models. All tested architectures were based on convolutional neural netwock
(CNN} architectures, but the ResNet- 101 model achieved the highest classification accuracy at 97.5%.

In conclusion, the integration of newral networks with enhanced computational capabilities and more exten-
sive training datascts should enable more comprehensive evaluations®, Despite this, the classtfication accuracy
of the majority of the currently propaosed solutions ranges b 90 and 95%, which, while very high, still
leaves substantial room for error. According to clinical standards, the margin of error should be kept under 5%
and ideally should be dlose to 3% Only one of the discussed classifiers satisfies these requirements. Crowsan
et al.” presented the finest audlogram classifier 1o date, using transfer learning to adapt an established tmage
classifier network to the analysis of audiogram images. Despite producing a dassification accuracy of 97%, this
method has significant limitations. Due to the fact that it ts an Image classifier, it cannot be applied to the original
data series generated by tonal audiometry. This necessitates converting the data series into audiogram images,
which may result in data loss. Moreover, although the structure of audiograms is generally similar, audiograms
generated by distinet hardware and software configurations can still differ significantly. In addition to differences
in background and line colours, audiograms can also differ in the amount of information conveyed (c.g. they
may contain data for 2 single ear or both). Conseguently, a universal classification solution for tonal audiometry
results cannot rely on an image classifier™,

In addition, each of the cited studies on determining hearing loss type was conducted with a relatively small
data set, ranging from 200 test results in Elbagr and Obali® to 1007 in Crowson et al. ™, which may have led to an
optimistic and unreliable estimation of model performance. Moreover, the limited size of the training dataset
poses a challenge in discerning relationship patterns within certain classes, potentially leading to a validation
outcome that has bias when applied to the test dataset,

In the above context, a summary of the current state-of-the-art is presented in Table 2.

As can be seen In Table 2, thus far the issue of hearing loss type classification has been researched on relatively
small data samples with undisclosed class ratios, and the best achieved dassification accuracy has been produced
for o raster dataset, resulting in limited appiication. Consequently, the p d work focused on the develop-
ment of a classifier trained on a considerably Jarger and more rep ive data set. M, . the developed
classifier has been designed for use with row audlometry data, ensuring greater flexibility of application.
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Table 2. Overview of state-of -the-art methods and results.

The tonal audiometry dataset

The dataset includes 15,046 andiometry test results from 9663 adult patients tested between 2010 and 2022 in the
Otolaryngology Clinic of the University Clinical Centre in Gdansk, Poland. Tonal uudiometry tests were con-
ducted in soundproof booths {ISO 8253, 150 8253). Signals were generated by calibrated Ttera 11 and Midimate
622 clinical audionseters, manufactured by Madsen Electronics (Otometrics, Copenhagen, Denmark) (PN-EN
606451, IS0 389, 150 8789, 150 7566, IS0 8798). The equipment had the ability to correct for ANSI S 3.6-1989
and 2004 standard hearing levels. The American Speech-Language-Hearing Association (ASHA) guidelines
were used In the evaluation of participants’ hearing by tonal audiometry™. Using air conduction tests, the signal
generated by the andiometer wis connected to TDH-39F headphones. For bone conduction tests, the audiometer
was coupled to a B-71 bone vibrator (New Fagle, PA). Of the examined patients, aged between 18 and 98, 5591
were female (57.86% ) and 4072 were male (42.14%). The patients’ age distribution by sex has been illustrated in
Fig. 1. A maximum of two test results were obtained from each patient, one for the left car and one for the right,
resulting in no replication of data from the same patient and ensuring good data variety,

Three experienced audiologists labelled the morphologies of hearing loss on the audiometry test results,
dividing the set into four classes: normal bearing, conductive bearing loss, mixed hearing loss, and sensorineural
hearing loss according to methodology presented in Table 1. The evaluation of every test results was conducted
by three audiologists. In cases where the classification resalt was not i the final decision was made by
majority vote In which the highest weight was given to the opinion of the senior wudiologist (T.F), Table 3 shows
the quantity of samples for each class in the produced dataset.

The results of pure-tone audiometry are commonly presented in the form of an audiogram, which is a graphi-
cal representation of how lond sounds must be at various frequencies for them to be audible. In addition to a
graphical representation, audiology software generates XML files comtaining all information regarding tonal
points that appear in the audiogram, The presented rescarch uses XML files to analyse raw audiometry data.

Comt
- 8§ EEEE 2

Figure 1. The distribution of patients’ age and sex in the dataset.

Narmal L25E4 (1707
Condactive hearing o | 657 (4.37%)

Mved hearing boas A (28 T 1%
Semsecineural Bearkeglons | 7777 (SL69%) [

Table 3. The four hearing types contained in the dataset and the pumber of samples in each group.
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A sample audiogram, depicting masked right bone conduction ([} and non-masked right airconduction—{0)
tresholds, with the corresponding XML file fragment containing the coordinates of consecutive tonal points is
presented in Fig. 2.

The input data for a single measurement {one ear of one patient) consists of seven lists corresponding to air
and bone conduction with hearing levels measured in decibels at frequencies of 125 He. 250 Hz, 500 Hz, 1000 Hz,
2000 Hz, 4000 Hz and 8000 Hz, respectively. It should be noted that two extreme frequencies (125 Hz and
8000 Hz) are not registered during bone conduction testing, which is why their values are set to null by defauls,

Ethics declarations

This study was approved by the Committee on Research Ethics at Medical University of Gdadsk (IRB
KB/23/2024), Prior to participating in the hearing test and this study, the subjects provided informed consent.
All methods were carried out according to the relevant guidelines and regulations,

Methodology

Data imbalance correction

An unbalanced training dataset, or in other words a dataset which does not evenly rey all possible cl

can significantly hinder the performance of machine learning models™. To prevent unintended outcomes from
occurring when processing unbalanced data, a well-known system of class welght was employed™, This system
permits the training procedure to account for the uncven distribution of classes by assigning different weights to
the majority and minority dasses, The objective is to penalise the model for the misclassification of the minarity
class by increasing its class weight and decreasing the class weight of the majority™. In the presented research,
appropriate weight parametess were calculated and applied for each class during the training process.

Data normalization

“The process of data normalisation can aid in stabilising the gradient magnitude during training, particularly
In the recurrent neural networks used in this study’'. Experiments using several normalisation methods, such
as linear normalisation, Robust Scaler and Max Abs Scaler, led 1o the sclection of Z-score normalisation as the
most effective’, Z-score normalisation refers to the process of normalising each value in a dataset so that the
mean of all the values is 0 and the standard deviation is |,

Network architecture

During a previows study™, several neural network aschitectures were evaluated in order 1o construct a binary clas-
sifier for normal and pathological hearing loss. The tested architectures included Multilayer Perceptron (MLP),
Convolutional (CNN) and Recurrent (RNN) neural networks. A multi-stage investigation revealed that the
RNN architecture performs best with this type of medical data. Over the course of that study, Recurrent neural
networks (RNN), Gated Recurrent Units (GRU), and Long Short-Term Memory (LSTM) have been tested on
a subset of the presented dataset. The final accuracy performance of RNN, GRU and LSTM was revealed to be
96,46%, 97.71%, and 98.12%, respectively. In addition, the LSTM model achieved an exemplary False Negative
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Figure 2, Two methods of representing tonal audiometry results: audiogram (left) and XML (right),
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rute of 0.2%, which enabled its clinscal tion, Furthermore, these results have been corroborated by another
study™’, which investigated different neural network architectures for categorizing three forms of hearing loss,
with an RNN-based medel demonstrating the best performance out of the 11 models evaluated. These results
arc in line with the general notion that RNN architectures perform well with sequential or time-series medical
data™ ", and LSTM in particular is well-known for successfully resolving problems with vanishing/exploding
gradients”’.

Due 1o the success of RNN-LSTM networks in the above-mentioned classifications, they have been selected
for use In the presented study. The initial proposed multi-class solution involves the processing of Input data
from a single ear of a patient’s audiometry test in the first LSTM lny!r In the input data, time steps correspond
to the tested frequencies, while air and bone conduction tures in each time step. Afterwards, the
uumb«o(noduuredncadbyadmpumhyenvdmhlﬂpswmu overfitting, The next steps consist of a similar
sequence of LSTM and dropout layers. The model is completed by a dense layer with softmax activation function.
After additional investigation and optimization, the initial model was modified by replacing the LSTM with a
Badirectional ESTM (Bi-LSTM)* in the first layer. The Bi-LSTM is a variant of Bi-RNN that utilizes two basic
LSTMs to analyse input time series in both forward and backward orientations, Utilizing data from both ways
allows the model 10 detect patterns that could be overlooked when only mhnndm:ﬁond 1STM, Thus, when
considering pure tone audiometry data series, it can significantly improve classification accuracy. An overview
of the proposed architecture is shown in Fig. 3.

Model evaluation

Due to the aforementioned class imbalance, the model has been tralned with the use of stratified K-fold cross
validation (SKCV)™. K-fold Cross- Validation is the process of dividing a dataset into K folds and evaluating
the maodel’s performance with new data. K represents the number of categories into which the data sample is
divided. For instance, if the k-value is 10, it can be referred to as a tenfold cross-validation. At one point in the
procedure, each fold serves as a test sample. SKCV is an extension of regular K-fold cross validation, which has
been designed specifically for classtfication problems in which the ratic between the target classes s the same
In each fold as it is in the entire dataset. In other words, the datasets are not distributed randomly into k-folds,
but instead in a way that does not impact the sample distribution ratko across classes, Using stratified sampling
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Figure 3. An overview of the proposed neural network architecture.
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rather than random sampling that relative class frequencies are effectively maintained across each train

and test fold. The behaviour of SKCV s represented graphically in Fig, 4.
Thus, the general workflow of the presented research is depicted in Fig. 5.

Metrics and statistical test
In the classification context, the performance of a classifier is typically evaluated by computing functions oa the
resulting confusion matrix. In essence, the confusion matrix rop the proportion of class sampies that have

been misclassified as other classes. For every class, there are four types of distinguishable parameters:

® True positive (TP), when positive predicted was true;
o True negative {IN), when negative predicted was true,
® False positive (FP), when positive predicted was false;
o False negative (FN), when negative predicted was false.

On the basis of these parameters, classification accurucy (1) is a common classification metric that computes
the proportion of correctly classified test data relative to the total number of test data, In addition, precision (2)
quantifies the proportion of positive class predictions that correspond to the positive class. In contrast, recall (3)
computes the number of positive class predictions from all positive examples. Finally, F, (4) provides a single
score that addresses both precision and recall concerns in a single number,

TP+ 1IN

Accuracy = TP TN+ P FN ()
Precision = PP (2)
Recall = ‘W-LI-N (3)
s s

The probability that a classifier provides more weight o the correct class than to the incorrect class is graphi-
cally presented in the form of Area Under the Curve (AUC). It is the area under a Receiver Operating chas-
acteristic Curve (ROC) that compares the true-positive rate to the false-positive rate by varying the decision
threshold of the classifier.

In order to statistically compare performance of mosdels the McNemar's Test™ was used. The primary purpose
of this test is to examine the disparilies between two dassifiers, specifically in relation to the instances where they
made divergent prodictions. The initial step entails performing calculations to determine the subsequent values:

*  n: number of items misclassified by both A and B;
® 101 number of items misclassified by A but not by B:

StratifiedKFold
] BN Testing set
1 BN Training set
2
3
§ 4
s 5
£ 6
3
8
9
class
0 20 40 60 80 100
Sample index
Figure 4, Schematic representation of a Stratified K-fold cross-validation, which uses proportional subsets of
cach class in every CV iteration.
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Figure 5. General workflow of the presented rescarch.

® 110 number of items misclassified by B but not by A;
®  nll:number of items classified correctly by both A and B.

The null hypothesis states that the erroe rates of A and B, denoted as n01 and n 10 respectively, are equal,

Results

Initial classification results

The applied stratified tenfold cross-validation of the p! initial LSTM model yielded the following results:
the average classification accuracy is 98.29% (4 /- 0.46%), the average precision is 98.30% (4 /- 0.47%), the aver-
nyuullhmhl- 0.46%), and the average F, score is 98.27% (+ /- 0.47%). Table 4 presents the detailed
Information of cach phasc of the SKCV procedure,

Accuracy (%) | V74T [N | VTET AT |97 W04 YR | 9R1d VAT [ 9RTY
Precision (%) 9744 19834 | Y78 9RA9 [URD0 G313 [ 5RAY | 9504 9TRE | 4ATY
ecall (W} UTET [983% | UTKT [9RAT [ U7 LLA [ WKL | U304 WTHT [ URTY
F, ocwe (%) YTAY [WMIN | T WEAG [ VTR M0 [ RSS90 9N |

Table 4. Stratified tenfold cross validation score of proposed model.
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‘The confusion matrix of the LSTM mode! is presented in Fig, 6. Normal hearing, mixed heaning loss, con-
ductive hearing loss, and sensorineural hearing Joss are represented by the N, M, C, and S indices, respectively.

Final classification results
The applied stratified tenfold cross-validation of the proposed Bi-LSTM model yicided the following results: the
average classification accuracy Is 99.33% (4 /- 0.23%), the average precision is 99.32% (+ /- 0.33%), the aver-
age recall is 98,85% (4 /- 0.45%), and the average F, score is 99.08% (+ /- 0.29%), Table 5 presents the detailed
information of each :luu of the SKCV procedure.

Table 6 displays the precision, recall, and F, score for each class of the proposed Bi-| STM model.

The confusion matrix of the Bi-LSTM model is presented in Fig. 7.

Comparison of different normalization methods

The issue of choosing an optimal neural network architecture as well as data normalization technique for the
presented problem has been investigated in detail in*'. The accuracy of both initial LSTM and proposed Bi-LSTM
maodels using different normalization techni isp d in Table 7.

g

Comparison with current state-of-the-art
The current state-of-the-art in raw audiometry data classification uses the C4.5 algorithm™ as a Decision Tree
Classifier”. In order to facilitate a comparison, the C4.5 model was applied and evaluated on the p ted data-
set. Application of stratificd tenfold cross-validation resulted in the following outcomes: the mean classification
accuracy is 95.64% (+/— 0.69%), precision 95.69% (+/— 0.74%), recall 95.66% (+/- 0.75%), F, score 95.63%
(4 /= 0.77%). Dwetalled results are provided below in Table 8,

‘The confusion matrix of the C4.5 model is presented in Fig, 8,

In order to statistically compare pesformance of the proposed BI-LSTM model with the C4.5 classifier we
used McNemar's Test. The significance level was determined at the value of p = 0.05. The null hypothesis can be
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Figure 6. Confusion matrix of lnstial model

Acsuracy %l | WEIT WY [ R2T W I mM  D (W TS
Urecision (N) | U322 | 9940 | 9952 (9910 | A1 | W58 | W06 | 9es 9947 | UR6T
Bocall (Wl | W835 |9450 | U809 | SRAZ | 9830 | w92 |SK7Y |0 9947 |uK7H
Fooorr (%) U076 | WOAB | G67A | WSS | 90T | 9425 9022 | 9930 9947 |9KTH

Table 5. Stratified tenfold cross validation score of proposed model

Precision (%) | 10000 | 0972 160,00 $9.49
Hecall (%) A2 | 90S w7 980
E, woee %) | 971 | W vos 5453

Table 6. Comparison of each class’s precision, recall and F, score.
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Figure 7. Confusion matrix of initial model.

Liness poemalization/Mas-Msn | 9721% {1/~ 1.1TW)
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Table 7. An analysis of the accuracy of LSTM and Bi-LSTM maodels using vanous normalizing approaches.
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Table 8. Stratified tenfold cross validation score of C4.5 model.
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Figare 8. Confusion muatrix of C4.5 model. The N, M, C, and S indices represent normal heatlng, mixed
hearing loss, conductive hearing loss, and sensorineural hearing Joss. respectively,
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rejocted in a two-tailed test if the cakeulated chi-square value{ X*) exceeds the critical chi-square value (X*(0.05))
at a significance level of 005, The chi-square statistic ylelded a value of 127.21, while the p-value was determined
10 be 00000000001, The result provides evidence to reject the null hypothesis, indicating significant statistical
difference between the two models,

The performance of solving a classification problem at different threshold settings is usually represented by
the area under the receiver operating characteristic curve (AUC-ROC). The AUC-ROC is typically mbk 10
binary classification issues, however, the one-vs-all technicue enables it to be extended to multiclass classificati
problems. The One-vs-the-Rest (OvR) multiclass strategy, also known as one-versus-all, involves computing
A ROC curve for each class. In cach stage, 4 specific class Is viewed as the positive class, while the remaining
classes are viewed as the negative class in the majority. The micro-averaged ROC curves with AUC parameters
of models is shown in Fig. 9.

Discussion
The initial LSTM model satisfactorily classified normal hearing (N), sensorineural (S), conductive (C), and
mtixed hearing loss (M) in teems of average accuracy of 98.29% (4 /- 0.46%) based on stratified tenfold cross
validation, The average accuracy is superior than the existing state-of-the-art. However, the results displayed in
Fig. 6 render the model unsultable for clinical applications. The main concern is the presence of false negatives
in individuals with normal hearing, which may lead to the paticnt being at risk of not obtaining appropriate
medical treatment. In ather words, the classification precision in the case of normal hearing ought to be 100%.
That said, this requirement is not met as there are four instances where sensorineural hearing loss was incorroctly
classified as normal hearing. Therefore, more efforts have been made o enhance the model. Several different
architectures were lavestigated, but only one variant of the traditional LSTM, the Bidirectional LSTM, yielded
ed results. This observation is ried by a number of published studies in which authors demonstrate
that bidirectional LSTM madeds outper “?Po conventional LSTM models. This insight is apparent in research on
natural language processing®* ", hul it applics to other fields as well™-*, An le of an application outside of
natural language processing is an article that concentrates on forecasting the spm)d of the COVID-19 pandemic
using a Bi-LSTM maded on time series data™. Out of the fifteen models tested, Bi-LSTM achieved the highest
performance, exceeding that of LSTM and other RNN varfants. This potential to further improve LSTM clas-
sification results motivated us to evaluate the performance of Bi-1STM on our dataset.

Based on stratified tenfold cross validation, the B-LSTM model successfully dlassified normal hear-
ing (N). sensorineural hearing (S), conductive hearing (C), and mixed hearing loss (M) with an average accuracy
of 99.33%. Beginning at 99.00 and ending at 99.73, the accuracy remained stable, with standard deviation equal
10 0.23%, Precision, recall, and F, score share similar characteristics with regard to accuracy. Table 6 revealed a
diversity of outcomes, with perfor ters broken down by individual dlasses. The dassification per-
formance of normal hearing, mixed heunng loss and sensorincural hearing loss has shown to be notably high. In
« cases of conductive hearing loss have been classified with lower accuracy, particularly in terms of recall,
The precise definition of recall for conductive hearing loss Is the ratio of correctly predicted cases of conductive
hearing loss (69) 1o actual number of conductive hearing loss cases (69 + 1 =70), which is approximately 98.57%.
There are a few explanations for this behaviour. To begin with, only 4,37% of the dataset represents conductive
hearing loss (Table 2), This implies that any misclassification will have a greater effect on statistical calculations
that take true positive examples into consideration. Furthermore, regardless of the weighting method used (n
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Figure 9. A ROC curve with the AUC parameter for each model
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the training process, NN has a lower chance of learning patterns from smaller amouants of data, as demonstrated
by*", The lower number of conductive hearing loss samples in the used dataset is cansed by the rules ofpaticm
treatment employed by medical institutes. In particular, conductive hearing loss is usually { by p ®Y
along the root of the ear, which essentially means that an object is blockmg the alr canal. This type of pmblcm
is typically diagnosed with an otescope during the initial patient examination, therefore nullifying the need for
conducting a pure-tone audiometry test, Currently there is no practical way to alleviate this problem, as perform-
ing audiometry tests on patients who can be diagnosed by simpler methods is not financially viable.

The results presented in Table 7 demanstrate that the selection of the optimal normalizing procedure consider-
ably affects the final accuracy value, Irrespective of the model used, Z-score normalization proved ta be the most
effective strategy for scaling f closely followed by Max Abs Scaler, The application of linear normalization
(Max-Min) resulted in a decrease in the degree of accuracy, particularly the r s of over one percentage point
Inn the LSTM moxdel and sround half a percentage point in the Bi-LSTM model.

The proposed solution significantly outperformed the current state-of-the-art in raw audiometry duta clas-
sification, held by the C4.5 Decision Tree (DT-]48) method proposed by Elbag and Obali”. Application of the
C4.5 classifier to the presented dataset demonstrated a level of accuracy which is in line with the one reported by
the original publication, with a mean value of 95.64% and a standard deviation of 0.69'%. This effectively makes
the state-of-the-art model around 4 percentage points inferior compared to the proposed Bi-LSTM model. The
dissimilarity is also evident in the confusion matrices of both models. Specifically, there is a notable distinction
In the misclassification of mixed hearing loss (M) as sensorineural hearing loss (S). The C4.5 model exhibits 24
instances of this misclassification, whereas the Bi-LSTM mode < trates only 3 instances, Furthermore,
there are four cases in which hearing loss was misclassified as normal hearing in the C4.5 model. It is worth
noting that such misclassifications were not observed in the Bi-LSTM model, The distinction between C4.5
and BI-LSTM is also evident in the ROC-AUC curves shown in Fig 9. The C4.5 model with an AUC of 0.97
performed less effectively compared to the Bi-LSTM model with an AUC of 1.0, Finally, the findings obtained
by McNesnar's Test indicate a statistically significant difference in the dassification outcomes between the C4.5
maodel and the Bi-1STM model.

In general terms of the audiogram classification problem, the overall accuracy of the presented model
(99.33%) exceeds the most performant of the existing approaches to hearing loss classification, presented by
Crowson et al. for raster data®, which is 97.5%, When compared directly, the difference in accuracy may not
seem very large, however it should be noted that it was obtained on a significantly larger dataset (1007 samples in
Crowson et al.* versus 15,046 in this study), which ensured proper variation of training as well as validation data
and guaranteed that the obtained dassification results are not overly optimistic. In machine learning, the larger
and more diverse the dataset, the better it is for discovering general patterns, particularly in medical applications
where specific cases occur infrequently but must be evaluated correctly by NN. Classification of hearing loss in
audiograms is typically based on frequencies between (1.5 and 4 kHz, but hearing loss can also be detected in
the upper pitch range of 4 to 8 kHz'". Consequently, it is crucial to train on a sufficient number of examples to
illustrate these specific audiometry challenges. It should also be noted that the work presented by Crowson <t al.
has been based on interpretation of raster audiogram images. As these lmages are the outcome of pure-tone
audiometry tests, working with them is the intuitive approach. Unfortunately, the majority of audiogram images
are generated by specialised software provided by different hardware vendors. While the symbols appearing
in audiograms are standardised by the American Speech-Language-Hearing Association™, there are no strict
rules regarding other aspects of creating audiograms. As a resuit, images from different sources can have a lasge
variety of differences, ranging from small details such as variance in colour of plots and size of measurement
point indicators, to changes which can significantly impede the performance of an automated classifier, such as
placing the test results from both cars on a single plot, As a result, image-trained modeds such as those presented
by Crowson et al. and Charih et al ™ will function properly only with specific sources of audiometry data. in
comparison, the cassifier developed during the presented study works on raw audiometry data, allowing it to
bypass vendor-specific issues with data representation.

Moreover, every system that will be used in clinkcal settings must meet extremely stringent requirements,
in order to ensure that it does not pose undue risk to patients. In this context, it is not only important that the
developed classifier achieves 4 high level of overall accuracy, but the types of errors it may be prone to make are
also crucial, In the context of the presented work, the most dangerous scenario is when a patient with hearing loss
Is misclassified as having normal hearing, which can result in them not receiving proper medical care. Therefore, a
secondary goal of the presented research has been to eliminate this type of ervor. The results of this endeavour are
visible in the confusion matrix of the presented model (Fig. 7). As it can be seen in Fig, 7, there are no instances
in which conductive hearing loss, mixed hearing loss, or sensorincural hearing loss are categorised as normal
hearing by the developed model. While the developed model is not completely ervor-free, its potential practical
application should not put patients at risk, This is a significant step-up from the current state-of-the-art C4.5
maded proposed by Elbags and Obali’, which yielded five instances of misclassification that may result in patients
not abtalning appropriate medical care, Mareaver, while both classifiers exhibit instances when individuals with
normal hearing were erroncousdy identified as having sensorineural hearing loss, the proposed model exhibits
a lesser number of this sort of error compared to the state-of-the-art, with 2 errors in the Bi-LSTM model a5
opposed to 5 errors in the C4.5 model. However, this type of error is less significant, as it would result in the
patient being directed to a qualified audiologist who would rectify the mistake.
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Conclusion

This paper presents 3 Bi- LSTM-based model for dassification of raw audiometry data into normal hearing and
three types of bearing loss. The developed solution advances the classification of hearing loss types bevond the
current statc-of-the-art in several areas. First, the achieved classification accuracy (99.33%) is superior to that
presented in current state-of-the-art in raw audiometey data classification, presented by Elbag and Obaly’,
which achieved 95,5%, The findings obtained from the comparative analysis between the C4.5 model proposed
by Elbag: and Obali and the Bi-LSTM model presented in this study using the same dataset indicate that the
Bi-LSTM model exhibits significantly higher accuracy and does not produce any errors that could negatively
impact patient health,

Secondly, the proposed selution also managed to outperform the current state-of-the-art in raster audiogram
classification presented by Crowson et al. ™ which achieves 97.5% accuracy.

Thirdly, the presented rescarch was conducted on 15046 audlometry test result samples, which is nearly
15 times larger than the largest dataset produced 1o date in terms of hearing loss type, which consists of 1007
audiograms and was established by Crowson et al. . The high variety and representativeness of the used dataset
ensures that the reliability of the obtained results also constitutes an improvement to the state-of-the-art,

Finally, working with raw audiometry data allows for a more flexible implementation in clinical settings. In
contrast 1o the approach presented e.g. by Cr etal. =, the presented method is not limited to working with
audiogram images produced by specific sources,

This being said, there are a few limitations associated with this study, Using an unbalanced dataset with
only 4.37% instances of conductive hearing loss results in a lower value of F, score compared to other classes,
Momm'r. working with raw audiometry data means that the classifier can only be used in medical facilities, as

ts are generally only p ted with auds images of their test results. In consequence, further work
ls needed to mtqmu: the presented model with an accurate audiogram image parser in order to make it more
dly available to patients as well as physicians.

Overall, the presuucd results suggest that the developed NN-based audiometry data classtfier can be applica-
ble to clinical practice, either in the form of 3 classification system for general practitioners or a support system
for professional audiologists. Moreover, the model can work with all hardware systems that generate text results
of audiometry tests, By allowing general practitioners to classify the results of pure tone audiometry tests, the
developed model may help to significantly reduce the caseload of audiology specialists. In addition, the proposed
solution gives professional audiologists access to an Al decision support system that has potential to reduce their
workload while also increasing diagnostic precision and decreasing human error.

Data availability
The datasets analysed during the current study are not publicly available shie to the confidentiality restrictions
imposed by the approved ethics of study but are available from the corresponding author on reasonable request.
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Development and testing of an
open source mobile application for
audiometry test result analysis and
diagnosis support

Michat Kassjanski* —, Marcin Kulawiak’, Tomasz Przewozny?, Dmitry Tretiakow” &
Andrzej Molisz*

Hearing impairments are typically assessed using pure tone audiometry, a diagnostic method that
allows for the identification of the degree, type and configuration of hearing loss. The results of this
assessment are generally displayed in the form of an audiogram, which graphically represents the
softest sounds perceivable by an individual across a range frequencies. This paper presents a novel
Open Source mobile application for the Android operating system that allows users to scan and
analyse audiograms using a smartphone camera and subsequently classify the type of hearing loss.
The application workflow is divided into three main stages: scanning, digitalization and classification
of the audiogram. For this purpose, the application implements several artificial intelligence and image
processing techniques, including YOLOVS, Optical Character Recognition (OCR) and Hough Transform.,
The scanned audiogram is analysed by a clinically validated Al model for classification of audiometric
test results, providing clinicians with valuable assistance in formulating a diagnosis. All implemented
algorithms and models were optimized for functionality on mobile devices. The application was
evalvated on three distinct classes of smartphones across various price points, demonstrating its
efficacy and consistent performance. The presented mobile application constitutes an advanced Al-
driven decision support system that is readily accessible to general practitioners, otolaryngologists
and audiclogists. Its integration in medical facilities presents a substantial opportunity to decrease
clinical workload, enhance diagnostic accuracy and reduce the likelihood of human error in hearing loss
evaluations, which is particularly important in developing countries.

rds Audi m, Hearing loss type, Mobile app, Audiogram digitalization, Public health
ogra &’ P aPpp 4 2

Hearing serves as a vital sensory function that &s integral to our daily experiences. Any Impairment of its
functionality may significantly affect one’s communication sXills, relationships and the general understanding of
thelr surroundings. Untreated hearing loss ranks as the third kading cause of long-term disability worldwide,
This condition impacts & wide range of individuals, spanning various age groups and has consequences for
Individual persons and their families as well as entire economic systems. The global economy faces an estimated
annual loss of around 1 trillion US dollars due to issues with inetficient diagnosis and treatment of hearing
loss®, The pressing nature of this public health issue is heightened by forecasts suggesting a notable Increase
in the population experiencing hearing loss in the coming decades. At present, it ix estimated that more than
L5 billion individuals face different levels of hearing Impairment, a number projected to rise to 2.5 billion
by 2050, according to the World Health Organization (WHO)'. Tackling this looming crisis demands urgent
focus and a unified approach 1o raise awareness, Increase access 1o hearing healthcare and execute Impactful
intervention strategics

The carly identification and effective management of hearing impairment, particularly in children, play a
crucial role in minimizing the impact of auditory deficiencies. Studies show that early detection can greatly
reduce occurrences of childhood hearing loss, leading to improved developamental results’. Medical and surgical
Interventions for ear discases have shown effectiveness in restoring hearing function, frequently enabling patients

Ipepariment of Geoinformatics, Faculty of Electronics, Telecommunications and Informatics, Gdansk University
of Technology, Gdansk, Poland. “Department of Otalaryngology, Medical University of Gdarnsk, Gdansk, Paland
‘Department of Otolaryngology, The Nicolaus Copemicus Hospital in Gdafsk, Copemicus Healthcare Entity,
Gdansk, Poland. “email: michal kassjanski(@pg.edu.pl
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to regain their original hearing capubilities. Nonetheless, the effective diagnosis and management of hearing
loss are fundamentally connected to the presence of sufficient and sustainabie hearing healthcare resources. A
major obstacke to the effectiveness of hearing health systems is the lack of trained professionals who can provide
essential audiological services'. This problem Is especially evident in low-income countrics, where the aumber

of ear, nose, and throat (ENT) specialists is less than one for every million individuals. The limited availability
of audiologists significantly intensifies the difficulties encountered In meeting the hearing health needs of these
tons',

The tssue is exacerbated by the fact that while skilled hearing healthcare practitioners can manually identify
and treat certain types of hearing loss, many problems can only be properly identified with the use of pure
tone uudxumzuy a method widely m.quuud as the gold standard for assessing auditory functionality, This

dure quantibes audi ric threshold shifts, aiding in the classification of hearing Joss into
specific c.nxegonct ductive, i I or mixed. The extent of hearing loss can vary from mild to
profound, greatly affecting a person's quality of 1ife, Evaluating suditory function through pare tone andiometry
is crucial not only for individual diagnosis but also for advancing epidemiological studies and developing
effective rehabilitation strategies'. The outcomes of pure tone audiometry are generally illustrated through an
audiogram, which serves as a graphical depiction shomng the lowest sound intensity, quantified in decibels,
that an individual is capable of perceiving across radou- uencies. This data provides a thorough insight
into an individuals hearing abilities and acts as an | e for professionals in crafting personalized
strategies for individuals facing hearing challenges. However, precise classification of audiograms with respect
to the specific location of hearing impairment poses a considerable challenge even for experienced clinicians.
General practitioners, in particular, often encounter considerable obstacles when attempting to Interpres
audiograms accurately”. This is inter alia because there can be as many as 3.62 million potential configurations
of audsograms derived solely from air conduction alone’. Such diverse representations of audiogeams lead 1o
substantial interpretive difficulties even for professionals in the feld*,

In literature, considerable attention has been focused on creating autormated technigues for clasifying audiograms
for the purpose of hearing ald setup, Nevertheless, the analysis of audiometry test results for the purpose af diagnosing
varsous forms of hearing Joss has received considerably less attention, Notably, Crowson et al.* introduced an susomated
approach for dassifying hearing loss types on audiogram images. Their research employed a ResNet modd, achicving
aclassification accuracy of 97.5%. Although this solution, named AuwoAudio, demonstrates impressive accuracy, there
mmlnoh@adutommkumatmkmacﬂnbﬂmﬂmmmmpunkuluindtwiopmguummmnosm
architecture, which includes deep convolutional newral network ires significant ti for
analyzing audiograms, which presents challenges for the mobile environment. Furthermore, the models training was
performed an a relatively small dataset of 1007 audiograms, and limited 1o ane specific type of sudiogram, which
omumusqplhvhnnymdﬂemm The structural features of avdiograms generally exhibit a bevel of
may arise from the differing hardware and software configurations
emplodengMacm In addition, the authors have not published the trained model nor the traning dataset,
which significantly impairs independent validation and advancement of their methodology. In this context, Kassjanski
et al* have proposed 4 hearing impalrment classifier which directly analyses audiometry test results. The presented
Al modd, trained an 15,046 audiometry test results, uses Bi-LSTM layers to analyse a patient’s frequency responses
and produce a diagnosss with over 99% accusacy. However, clinicians predominantly interpret auditory assessment
outcomy in the form of printed audiograms instead of numerical test results. In consequence, the implementation
of this model in clinical practice would require the users to manually convert each analysed sudiogram into a set of
numbers for dassification. which would be very time consuming,

Summing up, AutoAudio, which focuses on interpretation of audiogram images, may exhibit generalization
Issues due to being trained on a small dataset. Moreover, due to using a deep model, It is poorly fit for the
hardware capabilities of mobile devices, particularly in low-income areas, On the other hand, the Bi-LSTM
moded, although trained on a much farger dataset and using o potentially much more performant uMmecture.
cannot interpeet imagery data In conclusion, although recent years have seen ad ts in the aut
classification of audlometry data, especially in tmnsofucuncy. conslderable challenges persist In Implementing
these methods for broad clinical application.

This paper presents a mobile application aimed st Improving the efficiency of audlogram analysis by
leveraging smartphone technology. The proposed application utilizes the functionalities of a smartphone to
scan, process and classify audiograms using a model derived from the work of Kassjanski et al.*. The results
enable direct classification of audiograms via a smartphone application, which could streamline the diagnostic
process The applicstion enables general practitioners to independently chassify tonal audiometry results for the
purpose of subsequent patient referrals, Consequently, this study not only secks to minimize the number of
uncomplicated cases referred to audiologists but also factlitstes the allocation of grester time and resources to the
management of complex cases that necessitate specialized care. Additionally, the application may also be used as
an educational resource for budding audiologists, providing them with a platform 10 hone their diagnostic skills
and deepen their understanding of audiometric evaluation. Through this approach, the presented application
stunds to contribute significantly to both clinical practice and education within the field of audiology.

Materials and methods

The review of literature relevant to the presented rescarch is systematically organized into three primiry
domains: audiogram digitalization, classification of hearing lass types and mobile-based diagnostic decision
support systems,
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Audiogram digitalization

The digitizatton of audlograms significs an essential progress required for the successful application of modern
automated audiogram analysis models. Autemated systems are generally trained on pre-processed digital data
produced by specialized audiometric software, ensuring precision and uniformity in analysis. Nonetheless,
considerable obstacles emerge when the operational setting transitions to clinical environments, where
professionals may be limited to printed audiograms. In these situations, the unavailabtlity of accessible digital
data limits the modd’s usability and efficiency. The current literature on this specific issue is limited to the
publications listed below.

The initial effort was carried out by Li et al.”, who developed multiple convolutional neural networks to
extract audiograms, symbols and axis labels from audiogram images. The integration of outcomes from all
models yields a digital depiction of the audiogram. The system demonstrated 98% ac yon d images,
while schieving 84% accuracy on photographs captured with o camera.

Subsequently, Chairh and Green" introduced an advanced digitalization tool that employs YOLOVS for
symbal recognition and Tesseract for label identification. The dataset included 3,200 reports, in contrast to only
420 reports analyzed by Li et al”, This investigation took into account all audiological symbols, encompassing
those obscured from air and bone conduction. The sudiogram, axis label and symbol models achieved mAP@0.5
scores of 84%, 34% and 39%, respectively.

The latest work was carried out by Yang et al.”, who introduced a system similar 1o that of Chairh and Green',
featuring o multl-stage integration of YOLOvS moddels alongside an optical character recognition (OCR) model,
The investigation analyzed both pure tone andiometry and sound field testing. The accuracy rate at each stage
was around 98%, based on 2,535 samples used for audiogram detection and 2,214 records applied for symbol
detection.

In summary, the process of audiogram digitalization can be delineated Into two primary methodologles: the
employment of convolutional neural networks and the integration of YOLO in conjunction with OCR modeks.
Recent advancements in this field, as illustrated by Yang et al.’, utilize the latter approach, attaining an accuracy
rate of approximately 98%. The edevated accuracy highlights the eflectiveness of integrating YOLO with OCR
technologies to improve digitalization processes, especially in applications necessitating precise object detection
and text recognition. In consexquence, this approach was selected for implementation in the presented application
for the purpose of label detection, providing improved detection accuracy even with noésy data,

Classification of hearing loss types
The majority of publications regarding audiogram classification have concentrated on the automation of hearing
aid configuration, rather than identification of the various types of hearing loss.

In this context, Crowson et al.* employed the AutoAudio model to categorize audiogram images into four
different types of hearing: normal hearing and three types of hearing loss (sensorineural, conductive, and mixed).
A dataset comprising 1007 static asdlograms was used for training and testing purposes. Due to the relatively
small size of the training dataset, the authors opted for transfer kearning. From all evaluated architectures
the ResNet-101 model attained the highest classification accuracy of 97.5%, The weaknesses of this method
include the relatively small size of the training dataset and the fact that it is highly dependent on the style and
presentation of processed audsogram Images.

Other attemnpt at classifying types of hearing loss have focused on processing raw audiometry data instead of
audiogram images'. In this area, the best results have been achieved by Kassjanski et al.”, who proposed a Bi-
LSTM-based model for classification of audiometry test results into normal hearing and all three types of hearing
loss, The study involved an analysis of 15,046 audiomsetry test result samples. The proposed model achleved
a classification accuracy of 99.33%. In consequence, the proposed Bi-LSTM model demonstrated accuracy
saperior not anly to other methods working with numerical audiometry data, but also that demonstrated by
AutoAudio®, making it the best choice for inclusion in the presented application,

Mobile-based diagnostic decision support systems

Clinical decision support applications for mobi hold significant promise for improving the
access to medical services as well as their quality. However. the current chablenge for most healthcare systems lies
in the insuthcient level of digitalization, C ly, impl ting an application that enhances the medical

staff's work while simultancously ensuring standards of pulcnt data pmmwn presents significant challenges' ',
Nonetheless, it is evident that efforts are underway in this domain and usage of this type of application is visibly
Increasing and expected to become significantly mace prevaleat in the future' '

The incorporation of smartphone technology into medical imaging has transformed how heulthcare
professionals analyze and interpret medical data. One particular example is a molbile application that allows users
to analyze medical images using a smartphone camera, as illustrated in'**". This enables medical professionals to
efficiently employ automated classification models on medical data, thereby optimizing the dagnostic process.

In consequence, the accessibility and ce ience of umr‘ h is used to expedite image analysis and enhance
patient through p and precise dinj

In the domain of otouryngolog) Kanimozhi et al,' pmposcd A moblk upplmtion for hearing impairment
diagnosis via on-device audiometry test t with A decision tree dassifier was

Integrated into the application to enhance the preciston of test result analysis and classification, facilitating the
identification of ditferent Jevels of hearing loss (normal, mild, moderate, moderately severe, severe, profound).
Furthermore, the application provides recommendations based on the test outcomes, proposing potential
subsequent actions for the user. such as pursuing a professional evaluation. consulting a healthcare provider
or performing additional testing if hearing loss s tdentified. Unfortunately, the application is only capable of
assessing a general degree of hearing loss, not its particular type (which is criscial for effective treatment),
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The idea of performing audiometry testing on mobile devices has been implemented in several
applications' ', however it has always encountered fundamental difficultics linked to acquiring precise
audiomelric mmuremmls in non-clinical contexts, especially in a home setting und withowt the oversight
of & qualified audiologist. This has been exemplified e.g. by Masalski and Kegcicki™ who analysed pure tone
audiometry results across three different testing envi L clinical evaluations performed with an
audiometer, self-administered assessments conducted on a speclally calibrated computer under the supervision
of an audiologist, and Independent self-tests carried out at home, The findings reveal a mean difference in
hearing threshold values of -1.54 dB between the fiest and second testing serfes, with a standard deviation of
7.88 dB. Furthermore, the data generated from the first and third series exhibited a mean difference of - 1.35 dB
accompanied by a standard deviation of 10.66 dB. The findings indicate that while mobile-based audiometry
offers a practical option for general hearing assessments, it cannot be used as a replacement for clinical tests.

I summary, while mobile-based diagnostic decision support systens have seen o wide range of applications,
they do not present a viable alternative to professional audiometric cvaluation. At the same time, there is
presently no solution that integrates the capability to diagnose the type of hearing loss from an audiogram image
captured with a smartphone camera. In this context, the presented research aims to develop such an application
through integration of state-of-the-art methods for image recognition and analysis as well as audiometry test
result classification, The application would perform audiogram digitization with the help of YOLO, Optical
Character Recognition (OCR), and image processing techniques to extract raw audiometric data, which would
subsequently serve as input for the Bi-LSTM sudiometry test result classification model. To fulfil the functional
requirements for operating on medical data, all computations would need to be executed on the mobile device,
Furthermore, the application would feature & simple and Intultive user interface, enabling easy and efficient use
in a clinical environment.

Ethics declarations

This study was approved by the Committee on Research Ethics at Medical University of Gdansk (IRB
KB/23/2024). Prior ta participating in the hearing test and this study, the subjects provided informed consent,
All methods were carried out according to the refevant guidelines and regulations.

Design of the application

The methodology employed for the processing and classification of pure-tone audiometry test results on mobile
devices can be delineated into three distinct stages: scanning, digitization and dassification of audiograms,
The Initsal stage, scanning, entails the acquisition of audiometric data from conventional audiogram images,
accomplished through the use of a smartphone camera. The digitization stage is essential, as it involves
transforming the scanned audiograms into a digital format that s appropriate for analysis The classification
stage systematically organizes the digitized audiometry test results, enabling a thorough analysts of hearing loss
type.

Audiogram scanning

The scanning process was realized using the ML Document Scanner from Google's ML Kit™, This library simplifies
the scanning process by enabling the user to simply position their smartphone camera over the document for
automated capture, Furthermore, perspective correction was applicd along with automatic rotation detection to
ensure that docurments are displayed in an upright pesition. Furthermore, applications using the ML Kit do not
need to ask for permission to use the smartphone camera. Instead, the system utilizes the camera permission
from Google Play services, allowing users to manage which files they choose to share with the application. This
design decision allows users to retain mhoﬁty aver the files they choose to share with the application, thus
improving user privacy and trust in the scanning procedure.

The YOLOVS architecture created by Ultralytics™, which has been pre-trained on the COCO dataset™, was
used to train a model dedicated for audiogram detection. The dataset used for the training and testing process
was dertved from & previous study”. The dataset is comgprised of 15,046 audiometric test results derived from
9,663 adult subjects who underwent evaluation at the Otolaryngology Clinic of the University Clinical Centre
in Gdansk, Poland, between 2010 and 2022 Among the participants, 5591 Identified as female (57.86%) and
4,072 as male {42.14%), with ages ranging from 18 to 98 years, Only two test results (corresponding to the left
and right ears) were included for each subject, thereby ensuring the data integrity through the prevention of
duplication and promoting diversity within the dataset. To optimize the YOLOvS model for the detection of
audiograms, 100 test results were randomly selected from the entire pool. The hearing test reports were peinted
and photographed. followed by manual annotation, resulting in 200 sample audiograms, as each report contains
two sudiograms. During the sedection of the audiogram area, slightly larger bounding boxes were intentionally
chosen to avold tight enclosures that might inadvertently cut off more peripheral text. This decision was made
to ensure that critical contextual information is preserved for subsequent recognition tasks, which is crucial for
ensuring the averall accuracy of the detection model.

Audiogram digitization

The process of digitizing an audiogram involves three | stages: line detection, symbol detection and label
detection. In the preliminary phase, line dc«:ctkm ﬁocm on n:cogmztm the graphical lines that llustrate the
different thresholds of hearing at various freq phasis on symbol detection invaolves
Identifying the particular symbols that align with these lines, whld\ mﬂm auditory responses, Ultimately, label
detection is essential for linking cach identified line and symbol to their carresponding labels, which indicate the
frequmcy and intensity levels A thorough grasp of the spatial layouat of these individual lines, alony with their
corresp # labels, enables an accurate interpretation of the symbol values represented in the audiogram.
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Firstly, the detection of lines on the audiogrum was accomplished wing the Probabilistic Hough Transform®™
method, a variant of the original Hough Transform™, The development almed to address certain lkmimionsof
the conventional approach, particudardy the high computational costs associated with processing large im
The Probabilistic Hough Transform operates by randomly choosing a subset of edge pixels from the image and
subsequently fitting lines to those selected pixels. This procedure is conducted repeatedly, with the expectation
that each cycle will identify further pixels assoctated with the same line. A consensus set of pixels is ultimately
established, followed by the application of least-squares regression to fit a line to that set. The Probabilistic
Hough Transform offers & significant speed advantage over the traditional Hough Transform, which is essential
for mobile applications, However, it may sacrifice SOme accuracy, particularly in images with numerous noisy
or spurious edge pixels. To counteract this drawback, the system was further optimized
the incorporation of an interpolation method. This method calculates the pmllum of any nnddeded lines by
leveraging the spatial coordinates of the two dosest detected lines, thereby ing the b
the line detection process in audiograms, The implementation of the Probabilistic Hough Transform begins wllh
the crucial step of acquiring an edged image. The widely recognized Canny edge detection method™ was utilized
to accomplish this task. Prior to implementing the Canny algorithm, the image Is converted to grayscale. This
simplification improves edge detection by minimizing the complexities linked to color information. Moreaver,
the parameters employed in the Canny edge detector are determined by the median value of the image, which
guarantees that the threshold settings are adaptively modified to align with the unique features of the mput
Image. Figure 1 illustrates the line detection results.

Secondly, the architecture of YOLOvSs was employed to accurately recognize symbols on audiograms,
paralleling the established methodology used n audiogram detection. To train the model, 200 audiogram
images were extracted from the training dataset created for the audiogram detection stage. To address the
limited availability of audiograms with masked symbols, the dataset was further augmented by incorporating
32 additional audiograms that included such symbaols. This enh t brought the total number of manually
annotated audiograms to 232, Before the lm!ulng process started, the entire audiogram dataset was subjected 1o
binarization using the Otsu method. This operation aimed to enhance data recognition efficiency while reducing
the effects of noise and the natural Quctuations found within the dataset. Additionally, the binarization process
Is essential for removing most of unnecessary audiogram lines that could be located near the symbols of interest,
Such lines could putentially cause incorrect detections, which could undermine the precision of the symbol
identification process. Figure 2 illustrates a sampie audiogram before and after the binarization process.

A total of 8 didtinct classes, each co ding to various sudiological symbols, were idered for the 4
different types of measurement. The are presented in Table 1.

Thirdly, the application of Optical Character Recognition (OCR) technology, particularly the Machine
Learning Kit Text Recognition v2 API created by Google, alongside the fine-tuned YOLOVSs model, hus proven
to affer a strong loundation for detecting labels on audiograms. Preliminary investigations wtilized the Open
Source Tesseract englne, however results were Jess than satisfactory, especially on mobile devices. This resulted
in the implementation of a specialized OCR system designed specifically for mobike applications, thus avoiding
the nead for extensive model training, which is frequently essential when using Tesseract, Even with these

Fig. 1. The grayscale image of a yapimhudlognm(lrﬂ)ahngﬁdﬂhcllnndﬂecl«luﬂng!hc
Probabilistic Hough Transform method (right). Image rep data produced by the presented smartphone
application.
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Fig. 2. A photographed audiogram image prior to (left} and subsequent to (right) Otsu binarization. [mage
represents data produced by the presented smartphane application.
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Table 1. Audiological symbols identified on audiograms during digitizstion.

advancements, the OCRS performance in noisy image conditions demonstrated inherent limitations, as it did
not consistently recognize all labels, particularly when the text was blurred. An additional layer incorporating
YOLOwVS detection was integrated into the process to tackle these challenges. 'l'hc dataset comprising 232
audiograms, which had previously been utilized for symbol detection, was subjected to a meticul

annotation process. This resulted in o dataset specificolly cmplo}md for label detection modal training. This
maded was developed to identify 22 unique cahpnu, omrenng hcaring lcwll fmm =10 dB to 120 dB and
frequencies from 125 Hz to 8 kHz. Regarding ima tech decision was made to
omit binarization, as initial tests indicated that Wsmclhod resulted in a decline in recognition accuracy. Instead,
the images were converted 1o grevscale, which was found to be more effective in enhancing the performance of
the OCR and YOLOVS integration.

Hearing loss type classification
In the context of final audiogram classification, the implementation of Bi-1LSTM madel, as detailed in the
pnrﬂousmub‘ pl:yed- plmtll role in (hcmpofdmodlgbudnglmstype ‘The model was trained on
taset comprising 15,046 auds y test ic evaluation consists of
m'cndisunctummaloormpondtommdboneconduclhnthmholds.mmmdmd«ibdsamanm
of frequencies - specifically, 125 Hz, 250 Hz. 500 Hz, 1000 Hz, 2000 Hy, 4000 Hz and 8000 He, Prior 1o inputting
this data into the initial layer of the network, comprehensive normalization was performed using Z-score
normalization. This crucial step ensures that the data is scaled appropriatefy, facilitating improved convergence
during training. The first Bi-LSTM layer of the network utilizes dual Long Short-Term Memory (LSTM) units to
cwuim temporal sequences in both forward and reverse arientations, This bidirectional approach facilitates a
prebension of the fundamental patterns present in the audiometric data. Following the first Bi-LSTM
lnr.-r the model includes a dropout layer aimed at reducing the likelihood of overfitting by randomly turning off
apmlkmoﬁheneumdmlng(bemlnmgp«xas.smqmmlolh&ﬁmherhy:nofLﬂ‘M and dropout are
incorporated, which improve the model’s ability to generalize from the training data. The architecture concludes
with a dense layer that incorporates a softmax activation function, enabling the classification of four main types
of hearing loss normal hearing, sensorineural hearing loss, conductive hearing loss, and mixed hearing loss. By
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employing a thorough assessment with stratified 10-fold cross-validation, the Bi-LSTM mode] attained average
accuracy of 99,33%, highlighting its effectiveness in the precise dassification of bearing loss types,

Optimization of neural networks for mobile use
This study utilized three detection models to analyze avdiograms, symbols, and labels, employing the You
Only Look Once (YOLO) madel, first introduced in 2016 by Redmon et al*%. The YOLO framework leverages
convolutional layers to predict both the bounding boxes and class probabilities of all objects depicted within
an image. Since the YOLO algorithm is a single-shot detector, it only looks at the image once. The algorithm
calculates a confidence score for each predicted bounding box by multiplying the probability of an object being
present within u specified grid with the Intersection over Union (loU) metric, which sssesses the overap between
the predicted bounding box and the ground truth, Corrently, YOLO has experienced numerous iterations, with
versions spanning from 1 to 11 This study specifically vtilized YOLO version 5, which bas been previously
validated in research involving its application in mobile platforms™. Morcover, YOLOYS exhibits superior
computational efficiency and diminished video ¥ ption selative to its predecessors, while baving
a smaller memory footprint than its successors, rendering it advantageous for use in mobile applications.

Upon completion of the training process, all three YOLOvS models were exported to TorchScript format. The
procedure was performed using the function provided by Ultralytics, Furthermore, the models were refined for
mobile usage®!, through the following optimizations:

« Conv2D + BatchNorm fusion - the Canv2d and BatchNorm2d operations are Imcgncd Into a single Conv2d
operation within the forward method of the respective mosdule and all its

« Insert and Fold prepacked ops - the computation graph is madified by substituting standard 21 convolutions
and linear operations with their prepacked counterparts;

« ReLU/Hardtanh fusion - output activations within the ¢ lutional keenel are clamped, thereby streambining
the computational process. This technique is applicable to both 2D convolution and lincar operation kernels;

« Dropout removal - dropout and dropout _ nodes are eliminated from the module when the training mode s
Inncﬂve:

o Conv packed params humins mmdmion packed par are rel 1 to the root module. This adjust-
ment enables the ion structures;

o Add/RelLU fusion - imu.nas where Rel.U operations follow addition operations are combined into a singular
add_relu operation.

Throy; aﬁﬂmmbom. provided by PyTorch Mobile, the YOLOVS models have been significantly
refined, making them suitable for deployment in mobile applications, To successtully integrate the models into
the Android application, the PyTorch Android Lite library, specifically version 1.13.1 was employed. This library
Is designed to streamline the pmamo(loodmgmd executing machine learning models on mobile devices,
thereby enabling efficient inference capabilities.

Furthermore, the deployment of the hearing loss classification model also required optimization for mobile
device compatibility. The original Bi-LSTM model® developed in Keras has been converted into TensocFlow
Lite format using post-tralning quantization techniques. The conversion technique led to a notable deceease
in moadel size and enhanced latency during execution on Central Processing Units (CPUs) and hardware
accelerators, while still preserving an acceptable degree of accuracy degradation. This being said, it must be noted
that TensorFlow Lite does not currently affer native support for converting Bi-directional LSTM models, As a
result, the Multi-level Intermediate Representations (MLIR) conversion method was utilized as a feasible option,
even though it has not vet received widespread acknowledgment and validation. A comparative analysis was
conducted to evaluate the effectiveness of this conversion process, utilizing o dataset of 1,000 samples sourced
from the test data, The performance of the original Bi-LSTM model developed in Keras and the quantized
TensorFlow Lite model was assessed. The results from both models showed 2 significant bevel of agreement,
matching to five decimal places across all test instances. Additionally. the input tensor tor the TensorFlow Lite
madd was structured o replicate that of the Bi- LSTM Keras maxdel, exhibiting a shape of (1, 7, 2) and utilizing
a data type of float32. This configuration pertains to the examination of seven unique frequencies across two
different conductions, highlighting the model’s proficiency in managing intricate data effectively.

System architecture
The presented application realizes the functionality of dng:mlng hearing type from an sudiogram on o
smartphone through several steps realized by individual modules. The fisst module supports scanning of hearing

test reports using the smartphone camera, In this phase the scanned documem is refined via perspective correction
and, il necessary, automatic rotation. Subsequently, the YOLOVS model is used to detect and extract asdiograms
from the scanned report. Following the successful identification of an audiogram, the process of digitalization s
started. This process involves several essential operations, such as applying grayscale transformation, detecting
labels using OCR alongside YOLOVS, and performing line detection through the Hough Transform method.
Simultaneously, the audiogram 1s subjected to a binarization process, enabling further symbol analysis via the
YOLOVS moxdel. This detailed examination gathers essential data from symbols, labels, and lines, which is then
carefully processed and combined in order to recover the original values recarded during the tonal andiometry
test. The final module of the system effectively utilizes these values to classify hearing type through the Bi-
LSTM maodel. The classified results are then displayed In a simple user interface, ensuring user accessibility. The
comprehensive structure and functional dynamics of the proposed system are depicted in Fig, 3.
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Fig. 3. General architecture of the presented system.

Evaluation of created mobile Al models
“The k-fold cross-validation method™ was utilized to evaluate the performance of the created mobile-optimized
Al models. This methodical strategy involves dividing the dataset Into k separate subsets, generated through a
random shuffling of the data points to reduce any possible bias. In the process of k-fold cross-validation, the
model undergoes Iterative training on k-1 subsets, with one subset set aside as the validation set, allowing for a
evaluation of the model’s predictive pecformance. This procedure is carried out k tlimes, guaranteeing
that every subset serves as valldation set precisely one time. The evaluation scores obtained from the various
iterations provide 2 thorough and dependabl of the model’s effectiveness. The k-fold cross-validation
method reduces the potentsal for blas that could result from depending on a single train-test split by averaging
the performance metrics over all K ilerations. As a result, it offers a detailed insight into the model’s ability 1o
generalize, thus strengthening the rellability of the ecsults in the realm of predictive modeling. The presented
research used k =5, which resulted in train to test dataset propoctions of 80-20%, respectively,

The assessment of the YOLOVS model’s performance was carried out using the mean average precision
(mAP) metric, which is a recognized standard for evaluating the effectiveness of object detection, The mAP
metric integrates classification and localization elements, oﬂering a thorough ammem o( an algorithms
performance in identifying different objects. Additionally, mAP encomy several i Is, such as
the precision-recall {PR) area under the curve (AUC), multiple object categortes (MOC) and intersection over
union (lol7), To achieve a suitable equilibrium in the precision-recall trade-off, the AUC is crucial in calculating
mAFP. The PR curve for each object category is produced by methodically adjusting the confidence
linked to the model’s predictions, The average precision (AP) for cach individual class is then obtained from the
PR curve, enabling effective dassification and localization of multiple classes. Furthermore, the average precision
Is computed over various Tol) (hrl'shdds referred to as APS0 - 9. The average precision values (mAPS) - 90)
are calculated to yield a compreh L of muxlel performance across all specified loU thresholds,
Finally, the overall AP s computed by mngmg the AP values calculsted at each ToU threshold defined below:
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where AP is the average precision of each class and N is the total ber of cl The ol threshald was
set at 0.5 in this study. An loU value of 0.5 or higher is classified as a True Positive (TP), signifying that the
predicted baunding box adequately overlaps with the ground truth. Conversely, an ToU value falling below 0.5
is classified s 2 False Positive (FP), suggesting that the predicted bounding box does not accurately encompass
the intended object. Additionally, cases where the model does not identify an object that exists in the ground
truth are dassified as False Negatives (FN). Lastly, True Negatives (TN} refer to the segments of the image
background where no objects are identified. thus confirming the lack of any pertinent features in those regions.
Following this, the evaluation of maded performance was further enhanced by incorporating precision and recall
(sensitivity) as metrics, calculated as follows:

TP+ FP'
.
TP+ FN'

Precision =
Recall =

Mobile application testing
The evaluation of mobile applications involves assessing their functionality, usability, and performance across
different devices. This process is essential to ensure that the apps meet quality standards and provide a seamless
experience for users. This involves evaluating various clements including functionality, compatibility, security,
and user interface to detectand resolve problems prior to the app's launch, In the case of the presented app!
the testing was conducted manaally in accordance to pre-planned scenarios.

The goal of the presented research was to make the application work correctly on a possibly wide range of
smartphone devices from different price ranges, However, whereas a base hardware requirement for running

ﬂnappliauonmuldbcdeﬂnedhsedonﬂn of system RAM needed 1o fit and execute the Al madels,
muclhaneqmndmmupllonwasd\elmpactofﬂnqmmyofnmtplmcmonme
ﬁmcﬁnmﬂlym’!heipp.f’ q 3 was canducted on three distinct smartphones across

dlﬁvmmh»dgelwcg«ks.mmdylh:hmomhMombsz Samsung Galaxy 521 56, and Samsung Galaxy
§23 Ultra, All of those devices operate on the Android system and possess a minimum of 6 GB of RAM, The
distinction is evident in the primary camera specifications, beginning with the Motorola G82, which features
a triphe camera setup with a maximum resalution of 50 MP. while the Samsung S21 also boasts a triple camera
configuration, but with a resolution of 64 MP. The most prominent camera system is found in the Samsung $23
Ultra, featuring a quad setup and a maximam resolution of 200 MP. It should be noted that although the devices
were considered mid- to high-end when they debuted, all of them are over two years old at the time of writing,
and thus may be acquired with discounts of up so 50% of thetr launch price. The comprehensive specifications
of those devices can be found in Table 2,

Since the quality of a photograph is primarily determined by the lighting conditions under which it was taken,
experiments were conducted under three digtinet llumination levels selected according to the C and
Recommended Light Levels Indoors established by the Natlonal Optical Astronomy Obm'vutotr“‘ 50 Lx, 500 bx,
and 1000 Ix, which correspond to “Dark surrounding”, *Normal Office Work™ and “Normal Drawing Work”,
respectively. After examining the outcomes from a range of tests, it became evident that there were no notable
performance differences between the 500 Ix and 1000 Ix conditions. Consequently, the results peesented further
on will be narrowed to the ilhumination levels of 50 1 and 500 L. The differences between images captured under
those conditions are depicted in Fig, 4, which presents the same uudingnm photographed at 50 and 500 Ix.

The performance of different smartphone ¢ wis d by m ing the number of audiogram
lines which have not been property d d by the ap ,“ ion due to imuﬂidem lmagc qualhy This nppmldl
enabled concurrent evaluation of the perfor of missing data interp d in the
application,

‘The above-mentioned tests have been performed using a carefully selected set of audiograms which covered
all types of hearing. Furthermore, for each classification of hearing type, the audiograms were categorized into
three groups based on their complexity, which was defined by the ber of p ted symbols, the degree
of symbol overlap, and the number of symbols overlapping with audiogram lines. A sample representation of
all three groups, named Simple, Average and Complex is shown in Fig. 5. It should be emphasized that this

Duwe o reease | lune 97 3023 Jenuary 29 2031 Febeuary 17 2020

OSven | Andral 13 T Androud 14 T Androad 34

Chipet \ Qsalommun Smapdragon 695 Fxynos 2000 Orsalicamm Soapdragoe ¥ Gen 2

HAM B0 0 Gl

Primary camern | 56 MP with apeical imape stabiliaticn. | 12 M with arptical smage stabiliatic, | 200 M with optical iniage stabilisalain
Price on rebease $7 5w st

Table 2. The specification of devices on which the application was tested.
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Fig. 4. The same audiogram photographed by the M la G82 at 50 Ix (left), and 500 Ix (right).
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Fig. 5. Three audiograms representing levels of complexities.
dation in audi pkexity does not ity correspond to the challenges encountered in the medical

classification of henrlng lypcs "This is because the presented evaluation focuses on the degree of difficulty posed
by an audiogram to the detection system, particularly in refation to the number of objects present and the degree
of observed overlap, Instead of the values and refationships of the actual measurements.

Allin all, a total of twelve audsograms of varying complexity were used across three different devices under
two varying lighting conditions to evaluate the impact of smartphone camera quality on application performance.
In addition, any detection ervors identified during the tests were used to measure the effectiveness of the data
interpolation methods implemented in the application.

Technical requirements for mobile application usage

The application’s Software Development Kit (SDK) target has been designated as level 24 (Android 14) to
comply with the prevailing standards for incorporating mobile applications onto the Google Play platform™,
The minimum SDK tevel was set at 28 (Android 9) to fulfil the requirements of the Android padugu cmployrd
within the ion. From the haxd dpoint. a mini of 6 GB of RAM is required to acc

the execution of all implemented Al models as well &5 the ML Kit, which alone needs st least 1.7 GB of RAM.
Moreover, at least 400 MB of storage space is essential for the app’s installation due to the large size of the
bundled Al models. Finally, a camera sensor with at least 12 MP resolution is also secommended. At the time of
writing, new devices fulfilling these requirements can be purchased for less than 100 USD, Considering the fact
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Table 3. Audiogram detection performance in 5-Fold Crass- Validation,
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Table 4. Symbol detection performance in 5-Fold Cross-Validation.
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Table 5. Label detection performance in 5-Fold Cross-Validation.

that pre-owned devices are even more affordable, the hardware requirements for running the application should
make it viable for use even in low-income arcas

Results

The evaluation of each Independent YOLO-based object detector was conducted using a 5-fold cross-validation
approach to guarantee reliable performance metrics. The calculated metrics included mean Average Precision at
an foU threshold of 0.50 (mAP50), as well as precision, recall and mAP across a range of loU thresholds from
050 to 0.95 (mAPS0-95). The comprehensive findings of these assessments of the sudiogram, symbol and line
detection models are cutlined in Tables 3, 4 and 5, respectively,

Table 6. The results of testing the mobike application on different devices under varying lighting conditions,
Values in the three right-most columns represent the number of audiogram lines which have not been detected
and thus needed to be interpolated

Figure 6 ilhustrates a sample product of the impl dline detection sy on an audiogram photographed
by the Motorola Moto G82 5G under 500 Ix conditions. The audiogram represents mixed hearing loss, and its
complexity is considered as "Simple” The lines identified using the Hough method are represented by white
colour, while the approximated lines are highlighted in purple.

Discussion

Performance of audiogram extraction and digitalization models

The task of audiogram detection has been shown to be significantly less complex compared to the identification
of symbols and labels. The proposed model achieved 99% mAPS, 99% precision, 100% recall and 98% of mAP50-
95 in averaged results for this task (Table 3). When juxtaposed with the findings of Chairh and Green®, who
utilized a 3-fold cross-validation approach. the proposed model exhibited a notable enhancement in mAPSO,
improving by 15% points. At the same time, the precision and recall metrics remained consistent. In comparison,
the obtained results were slightly lower than that of Yang et al.”, who demonstrated an impressive 100% accuracy,
precision, and recall in their audi detection model. It should be noted, however, that Yang et al. did not
provide thelr mAPS50 values and chose not to use K-fold cross-validation, making it challenging to conduct
direct comparisons. Therefore, although both the presented mexdel as well as that of Yang et al.” show very high
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Table 6. Presents the results obtained from testing the application on different smartphones under vared
lighting conditions, with the msain objective being to assess the effectiveness of the line detection method. In
instances where specific lines were not correctly identified, the analysis was broadened to evaluate the Yy
of interpolating those lines, The numerical values displayed in the table correspond to the number of Hnes llul
have not been properfy detected, and thus were subject to approximation.

effectiveness, the lack of comparable metrics and variations in methodology hinder the ability to determine the
superior mosdel,

When considering the symbol detection moded, the performance metrics are also notable, attaining mAPS0
of 98% while sustaining precssion and recall a1 97% (Table 4). When assessed using the more rigorous criterion
of mAPS0-95, the models performance was markedly weaker, resulting in a score of 65%. This discrepancy
Indicates that the moded performs well in simpler detection scenarios but faces difficulties in more complex
instances of symbol recogmition. Analysis of confusion matrices revealed that the lowest performance scores were
linked to the masked air conduction symbols, denoted by sguare and triangle shapes. In contrast, the predicted
classifications for all remaining symbols consistently attained scores of 90% or above. This notable discrepancy
Is primarily due to the infrequent presence of masked air conduction symbols in the dataset. This issue is a
product of a broader problem, where masked air conduction symbols are significantly less prevalent in tonal
audiometry test results than their counterparts. These results show that the dataset augmentation comprising
an uldmoml 32 uudlogrnms with masked symboals has proven inadequate in addressing this imbalance. When
comparing the 1 results to those of other symbol detection models, the study by Chairh and Green®
reveals a score of only 39% mAPG@S0. This outcome is notably inferior to the performance metrics recorded in
the presented model, especially when taking into sccount the more stringent mAF across the spectrum of 50 to
95 (mAP30-95), which is still higher than that of Chalrh and Green®. It should be noted, however, that Chaich
and Green's study also included the examination of handwritten sudiograms, an area where the presented model
has not been specifically evaluated. \When comparing to the resaits presented by Yang et al”, the demonstrated
leved of accuracy aligns dosely with that of the presented model. reaching 98.11%, At the same time, it should
be noted that the suthors did not clearly state the value of the mAP@S0 metric in their findings and also did
not implement k-fold cross-validation, which brings into question the rob and generalizability of their
results.

As far as the labed detection moded is concerned, the findings demonstrate a dight improvement m its
effectiveness in relation to the symbol detection model The presented label detection model attained a mAP&50)
of 99%, with nearly flawless precision and recall in the sveraged results, as outlined in Table 5, The comparative
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Fig. 6. Example of line detection n an audiogram {mixed hearing loss, 500 Ix, Simple, Motorola Moto G482
5G). The lines identified using the Hough method are white, while intespolated lines are indicated in purple.
Image represents data produced by the presented smartphane application.

analysis reveals that the performance metrics of the propesed mode] greatly surpass those of Chairh and Green',
whose model achieves only a 34% mAP@30. Furthermore, the investigation carried out by Yang et al” departs
from the training of a YOLO-based model, concentrating solefy on an OCR system that attains an accuracy close
10 99%. Although this level of accuracy is very good and afigns with the %9% mAP@50 of the presented modd, it
should be noted that the presented application does not rely solely on this model and instead integrates its results
with the output of OCR for a more comprehensive label detection.
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Data interpolation methods and general application performance
The results presented in Table 6 demonstrate that the requirement for line Interpolation was significantly higher
under 50 Ix lighting conditions than under 500 Ix for all devices analyzed, which was to be expected. A more
intezesting observation is that the number of unrecognized lines was relatively high on certain devices even in
good lighting conditions. The Motorols Moto G82 5G, which should be considered an antry:level smartphone
at this point, exhibited grestest sensitivity to different light conditions. Under 50 Ix it reached 66 approximated
lines, while at 500 Ix this figure decreased to o still significant 18 lines. Comparative analysis of photographs
uncovered notable differences (n low-light image quality between this device and its more expensive counterparts,
The images taken with the Motorola exhibited a noticeably lower contrast and increased noise compared to
those producex by both of the Samsung devices under 50 Ix. This can be attributed to the fact that both the
Samsung S21 and Samsung $23 Ultra possess advanced image processing algorithms that improve the darity
of photog captured in low-light conditions. Aside from lighting conditions, another important factor
influencing line recognition was perspective distortion of the captured image, In particular, optimal alignment of
the Jens directly towards the document was observed to correlate with a reduction in the number of required line
approximations, Another interesting discovery which pertains to on-device image processing algorithms is that
the Samsung Galaxy 523 Ultra applied 4 sharpening filter over its photographs, which in some cases improved
the overall effectiveness of the detection system by generating more defined symbols and lines, but could also
hinder the detecti when symbaols overlapped. This is particularly visible for the Sensorineural hearing
loss class of wdlowlum. where in several cases the Samsung Galaxy S21 achicved better results than the 523
Ultra under the same lighting conditions, despite having a significantly inferior camera hardware, Furthermore,
the testing results indicate that, according to expectations, the audiograms categorized as “Complex” presented
the greatest challenge to the detection algorithms, particularly in the locations where symbols ovedapped with
lines. As a result, 46% of all interpolated lines across all devices and conditions come from the “Complex™
audiogram category. The most significant cutcome of the performed tests is that even in cases where 8 or 11
lines needed to be interpolated, the application still managed to properly dassify the audiogram. This proves the
effectiveness of the presented solution, in particular regarding the imp} d line interpolation algorithms.
In summary, the functionality of all modules comprising the application was relisbly showcased across all
evajuated devices. In more complex scenarios, the line interpolation functionality became increasingly critical,
yet the system maintained a capability for accurate audiogram classification. As anticipated, more expensive
devices have shown better performance in the Hough line detection system. Interestingly, this was more due to
better image processing algorithms than camera hardware alone, which is exemplified by comparing the results
of the Moto G82 and the Galaxy S21. This being said, even on an affordable device like the Matorola Moto G&2
5G the application demonstrated ¢ dable perfor proving its usability across a range of devices,

Application of the smartphone app within clinical setting

The application has been designed to simplify the process of analysing hnring test mu.lts conducted in audiology
and otolaryngology clinics as well as in hearing aid fitting comp thus | practitioners 1o
classify the results of pure tone audiometry tests. The app can analyze graphical audsometric results (audiograms)
and provide automatic interpretations based on hearing threshold outcomes for frequencies spanning from 250
to 8000 Hz. Existing applications with similar functionality, such as HearX™ and Sonic Sound™, focus solely on
identifying air conduction thresholds, known as the air threshold curve, which can reveal the extent of hearing
loss (such as mild, modem\e. pmd'ound. and severe), and recommending additional diagnostic measures, These
tools mainly conc on I hearing that individuals can perform at home with
standard hodphunﬁ or speakens. However, lhcy fail to provide pmfesuuml gnde analysis of audiometric
results. This pmentsan owonunky foc the proposed application to fill a significant gap in the market, offering
bealthcare p icated and reliable means of interpreting audiometric data.

The pmposcd mobllc upphcullnn alms to address an essential aspect of audmlngkal assessment: the
localization and evaluation of hearing damage, differentiating between impairments in the outer and middle ear
and dysfunctions in the inner ear and auditory nerve. This differentiation can be achieved through a detadled
analysis of two key audiometric curves—air conduction and bone conduction—and their interrelationship.
However. in routine clinical practice, such analysis often presents challenges duc to the inherent subjectivity
involved: ditferent professionals may interpret identical test results differently, leading to inconsistent diagnoses.
Margolis and Saly’, established that among o sample of 231 avdiograms assessed by five audiology experts,
consensus regarding the type of hearing loss was reached in only 50% of cases. By incorporating precise criteria
for classifying types of hearing loss—conductive, sensorineural, and mixed— the application can offer a clear

and definitive point of reference. In the application may enable general practitioners to easily
Identify a patient’s hearlng Joss type. By deallng with simple cases themselves, general practitioners wil be able
to not only accelerate the patient’s treatment and recovery, but they will also reduce the workload of professional
audiologlsts, who will only receive more complex cases. While experienced otolaryngologists and audiologists
will likely not find the application as useful in their everyday practice, it may still offer them the opportunity to
get 2 second opinion on intricate cases, as well as serve as an educational resource. As 2 result, implementation
of this application in clinical practice could considerably alleviate the workload of audiologists by concentrating
their efforts on cases that require expedited and specialized intervention, while moce straightforward cases can
be managed by general practitioners. Moreover, the ability to access supplementary opinions is could also reduce
the potential for human error in the diagnostic process.

Flnnlly. the successful dwclopmcnl and mmplementation of the presented application necessitated a
collab ¢ effort among experts in medicine, information technology and regulatory frameworks governing
medical drvlots. ensunng that the tool is both effective and compliant with industry standards. Thus, the
application has been meticulously engineered to ensure optimal protection of the processed patient data. First
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of all, the application does not collect or process sensitive data such as patient name or age. Secondly, no data is
retained on permanent stovage. The scanned document as well as extracted data are held exclusively in device
RAM for the duration of the analytical process, after which they are irretrievably deleted upon reception of the
classification results. Thirdly, the application performs all processing locally and is isolated from internet access,
ensuring that patient dala remains protected from external entities. M the application is executed in
a kernel-level Application Sandbox, which ensures that its memory and files cannot be accessed by another
process (thus providing an additional level of protection e.g. from spying applications), In the above context, the
mast important kssue related to Implementing the application In cdlinlcal practice is likely the need to inform the
patient that their medical data may be analysed by an artificial intelligence system, for which the patient should
provide explicit consent.

Limitations

While the presented application implements state-of-the-art Al models to provide freely available and accurate
tool for assisting hearing boss diagnosis, it also comes with some inherent limitations. In particular, the application
has been designed to operate with certain types of electranically generated audiograms, thus excluding any that
are presented in handwritten formats. Additionally, the examination is limited to the out ill Lin two
separate avdiograms—-one corresponding to cach car—rather than considering situations where information
from both ears is combined into a single audiogram. This being said, the application has been designed in a
modular fashion, so that any new functionalities could be added as additional modules slotting between or in
paralled to existing ones. By making this project Open Source, we would like to encournge its further development
lowards the Incorporation of diverse audiogram types. To achbeve this goal, #t Is vital to obtain a broader range
of audiogram datasets, which will be key for fine-tuning the YOLO madel employed for audiogram and symbol
detection.

Conclusion

This study presents a mobile application designed for comprehensive dlassification of heaning loss types
using audiograms captured through a smartphone camera on the Android operating system. ‘The application
Implements state-of-the-art methods for scanning, digitalization and classification of sudiograms. Scanning is
achieved with a YOLOYS Al model tuned to identify audiograms on photographed hearing test reports with 98%
accuracy. The digitalization step involves the use of YOLOVS models, OCR and the Hough Transform method
for the detection of symbols, labels, and lines with over 98% accuracy. The cassification step employs a Bi-LSTM
modd which categorizes digitalized audiograms into one of four distinet classes: normal hearing, conductive
hearing loss, mixed hearing loss and sensorineural hearing loss with 99% v. All the employed Al madel
have been specifically optimized and adapted for operation an mobile devices. 5-fold cross validation has been
employed to verify that the created Al models yield results that are comparable or better to those presented in
literature. Furthermore, the fabel detection phase uses an innovative integration of the YOLOvS moded and
OCR.

The performance of the application has been evaluated across three distinet devices, under two varying
lighting conditions, and with different levels of audiogram complexity. The results indicate that, thanks to the
implemented data interpolation methods, the application performs well even on a relatively low-end device and
under unfavourable lighting,

Current limitations of the application include the type of processed audiogram, which excludes those drawn
by hand and/or displaying results from both cars on a single plot, as well as the supported operating systems,
which are limited to Android version 9 and later. We hope to overcome these limitations opening the source
code of the application to the public. This way rescarchers with access to different audiogram types will be able to
adapt the detection networks 1o their data, and iOS users should be able to transfer all of the created Al modeds
1o their platform with relative case.

Overall, the presented application bas the potential to serve as an approachable and comprehensive diagnosis
support system for doctors in clinical practice. By enabling the classification of pure tone audiometry test results
by general practitioners, it may decrease the number of uncomplicated cases that are subsequently referred
to an audlologist. Morcover, the mobile Al decision support system may further benefit audiologists and
otolaryngologists by reducing their workload, improving diagnostic precision and decreasing the likelihood of

ersor.

Further work may involve a mare precise classification of test results, which would include the probability of
particular hearing disorders (e.g, otitis msedia, otesclerosis, noise-induced hearing boss, Méniére's disease, acoustic
schwannoma, ¢tc.), This way the application could generate suggestions for additional testing, advanced surgical
interventions or the possible use of hearing aids, thus further increasing the efficiency of medical practitioners.
Maorcaver, the training datasct for audiogram digitalization could be cxpanded with more instances of masked
air conduction symbols.

Data availability
The datasets analysed during the current study are not publicly available due 1o the confidentiality restrictions
imposed by the approved ethics of study but are available from the corresponding author on reasonable request.

Code availability
All code written in support of this publication is publicly available at https://github.com/michal-kass! Audiogr
amScan.
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