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Abstract 

The presented study investigated the classification of hearing loss types based on tonal audiometry 
test results. A comprehensive multi-stage study was designed and executed, employing various 
neural network architectures. This work was conducted in collaboration with the Department of 
Otolaryngology at the University Clinical Centre in Gdańsk, which provided the audiometric dataset 
for the study. In the initial phase, a deep neural network architecture was proposed for binary 
classification, differentiating between normal hearing and hearing loss. The subsequent phase 
focused on classifying different types of hearing loss. To achieve this, various classification 
algorithms have been tested on the collected dataset, including machine learning methods such as 
random forest, logistic regression, support vector machine, stochastic gradient descent, and 
decision trees, as well as neural network architectures such as multi-layer perceptron (MLP), 
convolutional neural network (CNN), recurrent neural network (RNN), long short-term memory 
network (LSTM) and gated recurrent unit (GRU). The knowledge gained from these experiments 
was applied to develop a complete classification model based on the Bi-LSTM architecture (which 
considered both normal hearing and specific types of hearing loss). The developed classifier 
achieved a 99.33% accuracy result, which is state-of-the-art in classification of hearing loss type 
based on audiometric data at the time of writing. The final phase of the research involved the 
development of a mobile application that allows medical staff to identify the type of hearing loss from 
a photograph of the test results taken with a smartphone. This required optimizing the classifier for 
mobile devices and developing a method to digitize the audiogram using OCR techniques, Hough 
transformation, and object detection with the YOLO architecture. The source code for the developed 
application has been released under an open-source license to facilitate future enhancements with 
additional features aimed at supporting the medical community. 
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Streszczenie 

Tematem badań była klasyfikacja typu ubytku niedosłuchu na podstawie wyników badań audiometrii 
tonalnej. W tym celu zaplanowano i zrealizowano wieloetapowe badania z wykorzystaniem 
zróżnicowanych architektur sieci neuronowych. Prace te zostały przeprowadzone w ścisłej 
współpracy z pracownikami Kliniki Otolaryngologii Uniwersyteckiego Centrum Klinicznego w 
Gdańsku, którzy dostarczyli wykorzystywany w badaniach zbiór danych audiometrycznych. W 
pierwszym etapie badań zaproponowano architekturę głębokich sieci neuronowych do klasyfikacji 
binarnej, rozróżniając słuch prawidłowy od niedosłuchu. W kolejnym etapie skupiono się na 
rozwiązaniu umożliwiającym klasyfikację różnych typów niedosłuchu. W tym celu na zgromadzonym 
zbiorze przeprowadzono testy algorytmów klasyfikacyjnych wykorzystujących metody uczenia 
maszynowego, takich jak losowy las decyzyjny, regresja logistyczna, maszyna wektorów nośnych, 
metoda stochastycznego spadku wzdłuż gradientu i drzewa decyzyjne, jak również architektury sieci 
neuronowych, takie jak jednokierunkowa sieć neuronowa (MLP), konwolucyjna sieć neuronowa 
(CNN), rekurencyjna sieć neuronowa (RNN), długa pamięć krótkotrwała (LSTM) oraz bramkowane 
jednostki rekurencyjne (GRU). Zgromadzone w ten sposób doświadczenia zostały wykorzystane w 
kolejnym etapie badań do opracowania opartego o architekturę Bi-LSTM modelu klasyfikacji pełnej 
(uwzględniającego słuch normalny jak również poszczególne typy niedosłuchu). Opracowany 
klasyfikator w przeprowadzonych badaniach osiągnął wynik 99.33% dokładności, osiągając 
najlepszy rezultat klasyfikacji typu niedosłuchu na podstawie danych audiometrycznych według 
bieżącego stanu wiedzy. Finalnym etapem badań było stworzenie aplikacji mobilnej umożliwiającej 
personelowi medycznemu identyfikację typu ubytku słuchu na podstawie zdjęcia wyników badań 
wykonanego za pomocą smartfona. W tym celu dokonano optymalizacji opracowanego 
klasyfikatora pod kątem wykorzystania na urządzeniu mobilnym oraz opracowano metodę 
digitalizacji audiogramu opartą na metodach OCR, transformacji Hougha i detekcji obiektów z 
wykorzystaniem architektury YOLO. Kod źródłowy opracowanej aplikacji został udostępniony na 
licencji otwartej w celu ułatwienia jej przyszłej rozbudowy o nowe funkcjonalności wspomagające 
pracę środowiska medycznego. 
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1. Introduction 

1.1. Dissertation outline 

This dissertation is based on a series of five publications, of which three are peer-reviewed journal papers 
published in Springer Nature Scientific Reports and Journal of Automation, Mobile Robotics and Intelligent 
Systems, while the two remaining papers are peer-reviewed conference papers published as conference 
materials, indexed by renowned science databases such as Scopus, Web of Science and DBLP. The five 
papers included in the series were published in 2022—2025. All five papers, which are included in this 
dissertation, together comprise a consistent set on the topic of application of artificial intelligence algorithms 
for analysis of pure tone audiometry. 

The outline of this dissertation is as follows: the Introduction Chapter 1 Section 1.2 describes the motivation 
for the research leading to this dissertation, in Section 1.3 the research hypotheses are formulated and 
described, Section 1.4 outlines the scope of this thesis and Section 1.5 presents the series of publications 
along with their scientific metrics. 

In Chapter 2, a description of medical terminology is provided, along with a characterization of the data and 
of the metrics that are utilized in the evaluation of models. Next, in Chapter 3, the research from the four 
papers (P1 - P4) is summarized with detailed comment about author’s contribution to the state of the art in 
terms of classification of hearing loss type. Chapter 4, based on paper P5, presents the original mobile app 
proposed by the author. Chapter 5 summarizes all the presented and published research material and 
outlines the future research areas. Chapter 6 outlines the computational resources that were utilized, while 
Chapter 7 presents references. The final chapter of the dissertation, Chapter P, includes all the papers that 
are part of the publication series for this doctoral dissertation, accompanied by statements of contribution. 

1.2. Motivation 

Auditory perception represents a crucial sensory function that is essential to the survival of humans and 
animals alike. Any impairment in auditory abilities can significantly hinder communication skills, negatively 
influence interpersonal relationships and jeopardize an individual's capacity to navigate and understand 
their surroundings. Untreated hearing loss is recognized as the third most common cause of long-term 
disability worldwide [1]. This condition crosses demographic lines, affecting individuals from a diverse range 
of age groups, and leads to substantial consequences not only for those directly impacted and their families 
but also for entire economic systems. The global economy encounters an estimated annual loss of around 
1 trillion US dollars due to deficiencies in the diagnosis and management of hearing loss [1]. The urgency 
of tackling this public health issue is further emphasized by forecasts suggesting a significant rise in the 
incidence of hearing impairment in the forthcoming decades. Currently, it is estimated that more than 1.5 
billion people suffer from varying levels of hearing loss, a number anticipated to increase to 2.5 billion by 
2050, as reported by the World Health Organization (WHO) [1]. Addressing this looming crisis requires an 
immediate and unified effort to raise public awareness, improve access to hearing healthcare services, and 
implement effective intervention strategies that produce tangible results. 

The timely identification and effective management of hearing impairment, especially in children, are crucial 
for minimizing the adverse effects associated with auditory deficiencies. Research has shown that early 
detection of hearing loss can significantly reduce the prevalence of auditory impairments in the pediatric 
population, leading to improved developmental outcomes [1]. Medical and surgical interventions for ear 
conditions have proven effective in restoring hearing function, frequently allowing patients to regain their 
original auditory capabilities. However, the successful diagnosis and management of hearing loss 
fundamentally depend on the availability of adequate and sustainable resources for hearing healthcare. A 
major challenge to the effectiveness of hearing health systems is the lack of trained professionals who can 
deliver essential audiological services [1]. This issue is particularly acute in low-income countries, where the 
ratio of ear, nose, and throat (ENT) specialists is fewer than one per million individuals. The scarcity of 
audiologists further complicates efforts to address the hearing health needs of these populations [1]. 

The complexity of the issue is further intensified by the fact that, though skilled hearing healthcare 
professionals can manually detect and manage certain forms of hearing loss, many conditions can only be 
precisely diagnosed through the use of pure tone audiometry - a technique widely regarded as the gold 
standard for evaluating auditory function. This assessment method measures audiometric threshold shifts, 
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thus enabling the categorization of hearing loss into distinct types: conductive, sensorineural, or mixed. The 
degree of hearing loss can range from mild to profound, significantly affecting an individual's quality of life. 
The use of pure tone audiometry is essential not only for individual diagnostic needs but also for enhancing 
epidemiological studies and creating effective rehabilitation approaches [1]. The results of pure tone 
audiometry are generally illustrated in an audiogram, which acts as a visual representation of the lowest 
sound intensity, expressed in decibels, that a person can detect across various frequencies. This information 
offers detailed insights into an individual's auditory abilities and serves as a vital tool for professionals in 
developing tailored intervention plans for those experiencing hearing difficulties. 

Artificial intelligence (AI) has the potential to mitigate the disparity between the availability of hearing 
professionals and the growing demand for their services. AI employs algorithms that allow computers to 
recognize specific patterns within data analysis and derive meaningful conclusions. This capability has 
facilitated the formulation of research hypotheses, which are elaborated upon in section 1.3. 

1.3. Research hypotheses 

The research hypotheses, which have been the foundation of the presented dissertation, have been 
formulated in 2021. Basing on the review of the state of the art in the area of automated hearing loss type 
classification (more in Section 2.1), and the initial implementation of deep learning models in mobile devices 
(details in Section 3.1), the following statements have been formulated: 

H1. The application of modern neural network architectures to classification of hearing loss 
types based on audiometric data can push the state of the art and deliver performance and 
accuracy viable for introduction in clinical practice. 

H2.  Modern neural network architectures dedicated for processing raster and time-series data 
are capable of accurate classification of raw tonal audiometry test results. 

H3.  It is possible to optimize modern neural network architectures to efficiently operate on 
smartphones which cost less than 100 USD, thus providing healthcare professionals around 
the world with a mobile application for classification of hearing loss types based on images 
of hearing test results captured with a smartphone camera. 

1.4. Scope and contribution 

On the basis of the research hypotheses, formulated in Section 1.3, the following goals of this dissertation 
have been defined: 

G1.  Review of existing classification models of pure tone audiometry data and their viability for 
application in medical settings. 

G2.  Testing different neural network architectures on raw audiometry data to develop a model for 
hearing loss type classification. 

G3.  Development of a deep learning model for hearing loss type classification which would be accurate 
enough for implementation in clinical settings. 

G4.  Creation of a mobile application allowing the use of the previously developed model to classify the 
type of hearing loss from a photograph of audiometric test results. 

1.5. Series of publications 

This section describes the series of five publications that comprise a consistent set on the topic formulated 
as the title of this dissertation. The series consists of three journal articles and two peer reviewed conference 
papers. 
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The first article [2], referred to as (P1), is a conference material prepared for the Workshop on Artificial 
Intelligence for Next-Generation Diagnostic Imaging which was part of the 17th Conference on Computer 
Science and Intelligence Systems (FedCSIS), hosted in Sofia in 2022. In the paper several different artificial 
neural network models, including MLP, CNN and RNN, have been developed and tested for classification 
of audiograms into two classes - normal and pathological represented hearing loss. 

The second paper [3], referred to as (P2), is a conference material prepared for the Doctoral Symposium - 
Recent Advances in Information Technology which was part of the 18th Conference on Computer Science 
and Intelligence Systems (FedCSIS), hosted in Warsaw in 2023. In the paper several AI-based models were 
used to classify audiograms into three types of hearing loss: mixed, conductive, and sensorineural. 

Both paper [2] and [3] are indexed in renowned databases, including Web of Science, SCOPUS and DBLP. 
The FedCSIS conference rank in the Computing Research and Education Association of Australasia 
(CORE) ranking was assigned as B until November 2022, when the FedCSIS has been classified as 
multiconference and not ranked. Moreover, the Computer Science conferences ranking [4] prepared for 
2012-2016 based on Google Scholar Metrics for 2000 conferences places FedCSIS on position 216, which 
is in the first quartile (Q1). 

The third paper [5], referred as (P3), is a journal article published in 2024 in the Journal of Automation, 
Mobile Robotics and Intelligent Systems – JAMRIS. The paper is an extended version of conference paper 
P2 [3], which investigates the application of a wider range of AI based algorithms and neural network 
architectures to the problem of classification of tree types of hearing loss. The paper also presents the 
influence of training dataset augmentation with the use of a Conditional Generative Adversarial Network on 
the results produced by different classification methods.  

The fourth paper [6], referred as (P4), is a journal article published in 2024 in Scientific Reports. The paper 
proposed a neural network model based on the Bidirectional Long Short-Term Memory architecture, which 
has been devised and evaluated for classifying audiometry results into four classes, representing normal 
hearing, conductive hearing loss, mixed hearing loss and sensorineural hearing loss. 

The last paper [7], referred as (P5), is a journal article published in 2025 in Scientific Reports. The paper 
presents a novel Open Source mobile application for the Android operating system that allows users to scan 
and analyse audiograms using a smartphone camera and subsequently classify the type of hearing loss. 

The details of each publications, including scientific metrics and Ministry of Education (MEiN) rank points 
[8] are presented in Table 1. 

Paper 
ID 

Title Authors Published in Scientific metrics Author’s 
contributi

on 

P1 Development of 
an AI-based 
audiogram 
classification 
method for 
patient referral 
[2] 

Michał Kassjański, 

Marcin Kulawiak, 

Tomasz Przewoźny 

Annals of 
Computer 
Science and 
Information 
Systems, IEEE 
(2022) 

MEiN points: 

70 in 2022 

70% 

P2 Detecting type of 
hearing loss with 
different AI 
classification 
methods: a 
performance 
review [3] 

Michał Kassjański, 

Marcin Kulawiak, 

Tomasz Przewoźny, 

Annals of 
Computer 
Science and 
Information 
Systems, IEEE 
(2023) 

MEiN points: 

70 in 2023 

70% 
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Paper 
ID 

Title Authors Published in Scientific metrics Author’s 
contributi

on 

P3 Efficiency of 
Artificial 
Intelligence 
Methods for 
Hearing Loss 
Type 
Classification: an 
Evaluation [5] 

Dmitry Tretiakow, 

Jagoda Kuryłowicz, 

Andrzej Molisz, 

Krzysztof 
Koźmiński, 

Aleksandra 
Kwaśniewska, 

Paulina 
Mierzwińska-Dolny, 

Miłosz Grono 

Journal of 
Automation, 
Mobile Robotics 
and Intelligent 
Systems – 
JAMRIS (2024) 

CiteScore: 0.9 

MEiN points: 70 (100 
in 2023) 

 

70% 

P4 Automated 
hearing loss type 
classification 
based on pure 
tone audiometry 
data [6] 

Scientific 
Reports (2024) 

CiteScore: 6.7 

Impact Factor: 3.9 

MEiN points: 140 

70% 

P5 Development 
and testing of an 
open source 
mobile 
application for 
audiometry test 
result analysis 
and diagnosis 
support [7] 

Michał Kassjański, 

Marcin Kulawiak, 

Tomasz Przewoźny, 

Dmitry Tretiakow, 

Andrzej Molisz 

Scientific 
Reports (2025) 

CiteScore: 6.7 

Impact Factor: 3.9 

MEiN points: 140 

70% 

Table 1. The information regarding each publication that is part of the series, together with its scientific 
metrics. 
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2. The problem of hearing loss type classification 

2.1. Pure-tone audiometry 

Hearing impairment is primarily evaluated through the use of pure-tone audiometry, which is traditionally 
performed in a soundproof setting while the individual is seated. This technique involves the presentation of 
a series of pure tones that gradually increase in loudness, delivered at predetermined threshold levels, 
usually via headphones. The aim is to determine the auditory threshold for both air and bone conduction. 
Air conduction assesses the functionality of the entire auditory system, which includes the auricle and 
extends to the auditory centers situated in the temporal lobe. Any level of impairment within this system 
leads to a decrease in the air conduction curve. On the other hand, bone conduction evaluates the auditory 
mechanism from the standpoint of the bony structure of the cochlea, bypassing the transmission of sound 
through the outer and middle ear. Although it offers an alternative pathway for sound transmission, its 
importance is generally regarded as lesser than that of air conduction. By employing pure-tone audiometry, 
which assesses both air and bone conduction, it becomes possible to identify the characteristics of the 
hearing deficit. Conductive hearing loss is usually linked to conditions affecting the external auditory canal 
and/or the middle ear. In contrast, sensorineural hearing loss results from damage to the sensory cells 
and/or the nerve fibers within the inner ear [9]. Mixed hearing loss signifies a combination of both 
sensorineural and conductive hearing impairments [10]. Hearing loss can present as unilateral or bilateral, 
may occur suddenly or develop gradually, and ranges in severity from mild to profound. Hearing impairment 
is widespread, especially among individuals with auditory disorders and the elderly population [11]. 

2.2. Data 

The results obtained from pure tone audiometry are usually represented through an audiogram, which 
serves as a graphical representation that displays the minimum sound intensity, measured in decibels, that 
a person is able to hear at various frequencies. This data offers a detailed understanding of an individual's 
hearing capabilities and is an important resource for professionals in designing personalized interventions 
for those with hearing issues [12]. 

The datasets utilized in all articles included in this series were sourced from adult patients who were tested 
between 2010 and 2022 at the Otolaryngology Clinic of the University Clinical Centre in Gdansk, Poland. 
Tonal audiometry evaluations were carried out in soundproof booths (ISO 8253, ISO 8253). The signals 
were generated using calibrated Itera II and Midimate 622 clinical audiometers, produced by Madsen 
Electronics (Otometrics, Copenhagen, Denmark) (PN-EN 60645-1, ISO 389, ISO 8789, ISO 7566, ISO 
8798). The equipment was designed to accommodate corrections for ANSI S 3.6-1989 and 2004 standard 
hearing levels. The assessment of participants' hearing through tonal audiometry followed the guidelines 
established by the American Speech-Language-Hearing Association (ASHA) [13]. During air conduction 
tests, the signal from the audiometer was connected to TDH-39P headphones. For bone conduction tests, 
the audiometer was linked to a B-71 bone vibrator (New Eagle, PA). Each patient provided a maximum of 
two test results, one for each ear, which ensured that there was no duplication of data from the same patient 
and promoted a rich variety of data [6]. 

In addition to the audiograms, the provided datasets also encompass XML files generated by audiology 
software, which contain comprehensive information about the tonal points present in the audiogram. In the 
P1-P4 papers, XML files were utilized to analyze the raw audiometry data. A sample audiogram along with 
a fragment of the corresponding XML file that includes the coordinates of the consecutive tonal points, is 
displayed in Fig 1. 



 

 

 

<MeasCond><TonePoint 

Freq1="125" Intensity 1="450" 

></TonePoint> 

<TonePoint 

Freq1="250" Intensity1="400" 

></TonePoint> 

<TonePoint> 

Freq1="500" Intensity1="450" 

></TonePoint> 

[…] 

 

 

Fig. 1. Two methods of representing tonal audiometry test results: audiogram (left) and XML (right) [6]. 

As shown in Fig 1, the horizontal axis of the audiogram represents frequency, which is quantified in Hertz 
(Hz) and typically ranges from 125 Hz to 8000 Hz, encompassing the human hearing spectrum. The vertical 
axis indicates the hearing level, measured in decibels (dB), usually spanning from -10 dB (indicating very 
good hearing) to 120 dB (indicating profound hearing loss). A higher value on this axis means that the sound 
must be louder for the individual to detect it.  

Additionally, audiograms utilize specific symbols to denote the results of hearing tests for each ear. For the 
right ear, the symbol "O" signifies air conduction thresholds, indicating the softest sounds the individual can 
hear through air conduction, while the symbol ">" indicates bone conduction thresholds for the right ear, 
showing the faintest sounds heard through vibrations applied to the skull. For the left ear, the symbol "X" 
represents air conduction thresholds, and the symbol "<" indicates bone conduction thresholds. 
Furthermore, symbols such as "◻" and "△" may be used to indicate masked air conduction thresholds, 
which are employed when testing one ear while the other is masked to prevent cross-hearing. The symbols 
"[" and "]" can denote masked bone conduction thresholds [13]. 

2.3. Target metrics 

2.3.1. Classification metrics 

Classification metrics provide a way to quantitatively evaluate how well a classification model performs. 
They offer a deeper insight into the model's effectiveness by taking into account various aspects, ranging 
from the basic measure of accuracy to more complex metrics that differentiate between different types of 
errors. This distinction can be crucial for a comprehensive assessment of the model's performance. 

The metric that is most intuitive, which is accuracy, can be mathematically articulated as the ratio of correct 
predictions to the overall predictions made for a certain dataset. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠

𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠 𝑚𝑎𝑑𝑒
 

In many scenarios, evaluating accuracy alone is inadequate, particularly when working with an unbalanced 
dataset. Therefore, to improve the assessment of the model, a confusion matrix is applied. The confusion 



 

13 

 

matrix is a table which indicates the number of correct and incorrect predictions made by the model against 
the actual classifications found in the test set, in addition to the nature of the errors that were made. The 
results from the confusion matrix can be divided into four categories: 

• True Positives (TP): when positive predicted was true;  
• True Negatives (TN): when negative predicted was true; 
• False Positives (FP): when positive predicted was false;  
• False Negatives (FN): when negative predicted was false.  

From these four parameters (TP, FN, FP, and TN), one can compute precision, recall and the F1 score. 
Precision is defined as the classification model's ability to accurately identify only the relevant data points, 
which is calculated as the ratio of all samples the model has classified as positive to the actual number of 
positive samples. Recall, in contrast, is the classification model's ability to identify all relevant data points; it 
measures the number of positive class predictions made from all instances of the positive class. Finally, the 
F1 score, is a single metric that combines both precision and recall, representing their harmonic mean. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

𝐹1 𝑠𝑐𝑜𝑟𝑒 = 2 ∙
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∙ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 

Moreover, the performance of classification models is often depicted graphically in the form of the ROC 
curve (Receiver Operating Characteristic curve) and the AUC score (area under the ROC curve). The ROC 
curve demonstrates the balance between recall, which is also known as True Positive Rate (TPR), and the 
False Positive Rate (FPR) at various decision thresholds. The FPR shows the share of objects falsely 
assigned a positive class out of all objects of the negative class. In more precise terms, it pertains to the 
percentage of negative data samples that are mistakenly classified as positive (FP) among all negative data 
samples (TN + FP). 

𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑅𝑎𝑡𝑒 =
𝐹𝑃

𝑇𝑁 + 𝐹𝑃
 

2.3.2. Object detection metrics 

The problem of object detection employs metrics similar to those used in classification. However, this task 
is more complex as it involves both localization (bounding box) and classification simultaneously. The 
accuracy metric that assesses the overlap between the predicted bounding box of a detected feature and 
the ground truth bounding box is known as Intersection over Union (IoU). Additional calculations are also 
derived from the confusion matrix, however, the TP, TN, FP and FN metrics need to be adjusted within the 
context of object detection: 

• True Positive (TP): This refers to a precise identification where the object detection model 
successfully recognizes and locates objects, IoU score between the predicted bounding box and 
the actual ground truth bounding box meeting or surpassing a set threshold.  

• True Negative (TN): This term is not applicable in object detection as it primarily aims to accurately 
confirm the absence of objects. The primary objective is to detect and identify objects rather than 
to validate their nonexistence.  

• False Positive (FP): This denotes an erroneous detection, occurring when the model incorrectly 
identifies an object that is absent in the ground truth or when the predicted bounding box has an 
IoU score that falls below the established threshold.  

• False Negative (FN): This represents a failure to detect ground truth, occurring when the model 
fails to recognize an object that is present in the ground truth, effectively indicating that it has 
overlooked these objects. 
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By employing the formulas defined in the preceding section it is possible to determine both precision and 
recall. Precision is concerned with the accurate identification of relevant objects, whereas recall highlights 
the model's ability to detect all ground truth bounding boxes. Collectively, precision and recall assess the 
equilibrium between the quality and quantity of predictions. 
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3. Automated classification of pure tone audiometry data 

This chapter summarizes research on automated classification of hearing loss type, originally published in  
four peer-reviewed papers (P1-P4). The research was divided into several stages. The first stage involved 
creating a binary classifier to distinguish normal hearing from hearing loss (P1). This was followed by the 
development of a three-class classifier distinguishing between the three types of hearing loss (P2, P3). 
Finally, by integrating the experience and expertise from prior research, a complete classification model, 
consisting of 4 classes (normal hearing, sensorineural hearing loss, conductive hearing loss and mixed 
hearing loss), was proposed (P4). 

Section 3.1 discusses the state-of-the-art. Section 3.2 describes the work related to creation of the binary 
classifier. Section 3.3 outlines the work related to development of the classifier distinguishing between three 
types of hearing loss. Section 3.4 presents the full automated classifier of hearing loss type.  

3.1. State-of-the-art in audiometry data classification 

In the realm of medical practice, the identification of hearing impairment types is based on pure-tone 
audiometry test results, which are analyzed according to their configuration, severity, lesion location (type 
of hearing loss) and symmetry [14]. The lesion's site is determined by the air and bone conduction thresholds 
on the audiogram, while the configuration is characterized by its shape. The severity is assessed by the 
degree of hearing loss. 

The area of automatic audiometry data classification has been explored for a considerable duration 
overtime. In the last decade, multiple attempts have been made to establish an automated classification 
method that is accurate enough to be applied in practice. This work can be categorized into two main 
thematic areas: the classification of audiogram shapes to determine the initial configurations of hearing aids 
and the diagnosis of hearing loss types. In the first category, there are numerous documented attempts 
found in the literature, beginning with Chelz Belitz et al [15], who integrated unsupervised and supervised 
machine learning techniques to correlate audiograms with a limited number of hearing aid configurations. 
More recently, Abeer Elkhouly et al [16] proposed a machine learning solution to classify audiograms into 
hearing aid configurations based on their shapes using unsupervised spectral clustering. The topic of 
automatic hearing aid configuration is a popular one [17,18,19], yet it is quite distinct from the focus of the 
current PhD thesis. These publications concentrate on the shape of the audiogram, which seeks to predefine 
the configuration of hearing aids from a specific selection of settings through clustering methods. The 
popularity of this issue is not by chance; it is due to the direct applicability of these methods in the commercial 
market. In contrast, the classification of hearing loss types, which is directly related to a medical diagnostic 
problem, has attracted significantly less attention than automated hearing aid configuration. 

In this context, Elbaşı and Obali [20] provided a comparison of several methodologies for assessing hearing 
loss, including the Decision Tree C4.5 (DT-J48), Naive Bayes, and the Neural Network Multilayer Perceptron 
(NN) model. The study was performed on a dataset consisting of 200 samples, categorized into four distinct 
groups: normal hearing, conductive hearing loss, sensorineural hearing loss, and mixed hearing loss. The 
input data was organized as a series of numeric values representing Decibels at constant frequency levels 
(750 Hz, 1 kHz, 1.5 kHz, 2 kHz, 3 kHz, 4 kHz, 6 kHz, 8 kHz). The classification algorithms were executed 
using Weka software, resulting in an accuracy of 95.5% for the Decision Tree, 86.5% for Naive Bayes, and 
93.5% for the NN model. 

In a recent investigation, Crowson et al. [21] utilized ResNet models to systematically categorize audiogram 
images into three categories of hearing loss: sensorineural, conductive and mixed, along with a classification 
for normal hearing. The study made use of a dataset that included 1007 audiograms, which were pre-
processed into static plots with a resolution of 500 × 500 pixels. Instead of executing a complete training 
from scratch for the classifier, the authors strategically utilized transfer learning techniques, leveraging well-
established raster classification models. While all assessed architectures were based on convolutional 
neural network (CNN) frameworks, the ResNet-101 model particularly excelled, achieving a remarkable 
classification accuracy of 97.5%. 
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Paper Audiogram 
classification 
problem 

Data size Data type Accuracy (%) 

Ersin Elbaşı and 
Murat Obali [20] 

Hearing loss types: 
normal, 
conductive, mixed 
and sensorineural 

200 Raw audiometry 
data 

95.5 

Crowson et al. 
[21] 

1007 Audiograms (raster 
data) 

97.5 

Table 2. Existing approaches to the classification of hearing loss types. 

In summary, the subject of AI-based audiometry data classification has not been thoroughly explored. The 
existing solutions have been developed and tested on relatively small datasets, and thus their applicability 
tin general medical practice is limited (Table 2). Clinical guidelines indicate that the acceptable margin of 
error should ideally be below 5%, aiming for a target closer to 3% [22][23]. Among the classifiers reviewed, 
only one satisfies these criteria. Crowson et al. [21] created the most efficient audiogram classifier to date, 
employing transfer learning to modify an existing image classification network for the analysis of audiogram 
images. Although this approach achieved an impressive classification accuracy of 97%, it possesses 
significant limitations. As an image classifier, it cannot be directly utilized on the original data series 
produced by tonal audiometry. Consequently, the data must be transformed into audiogram images, which 
may result in the loss of critical information. Furthermore, while audiograms typically share a similar 
structure, those generated by different hardware and software can exhibit considerable variation. These 
discrepancies may encompass differences in background and line colors, as well as the volume of 
information displayed (for example, whether the data pertains to one ear or both). Therefore, a universal 
classification approach for tonal audiometry cannot depend solely on an image classifier. Moreover, since 
the existing studies have been performed on relatively small datasets, this limited sample size may have 
resulted in an overly optimistic and potentially unreliable performance evaluations. The small size of the 
training dataset also complicates the identification of significant patterns within specific classes, which could 
lead to biased validation results when applied to the test dataset. 

3.2. Binary classification   

This section is a summary of conference paper (P1) entitled „Development of an AI-based audiogram 
classification method for patient referral”. 

The main objective of the research (P1) was to develop an AI-driven system designed to classify audiometry 
data, aiming to enhance patient referrals within the realm of hearing healthcare. Audiometry tests play a 
crucial role in the diagnosis of hearing impairments, but their interpretation necessitates the expertise of 
trained audiologists. The number of available audiologists rarely follows the growth dynamics of the patient 
population, which results in delays in obtaining diagnoses. This research aimed to tackle this issue by 
creating an AI tool capable of automatically categorizing tonal audiometry test results into two distinct 
groups: normal hearing and pathological hearing loss (which indicates the existence of hearing impairment). 
By implementing this system, the AI could support general practitioners (GPs) and primary care providers 
in swiftly and accurately identifying patients who require further assessment by specialists, thereby 
expediting the referral process and enhancing the overall delivery of healthcare. 

The study used a dataset consisting of 2,400 data series contained numerical information about tonal points, 
defined as loudness (dB) for a given frequency (Hz), in XML format.. The dataset included the following 
range of frequencies: 125Hz, 250Hz, 375Hz, 500Hz, 750Hz, 1000Hz, 1500Hz, 2000Hz, 3000Hz, 4000Hz, 
6000Hz, 8000Hz. These data were collected from various clinical settings and labeled by experienced 
audiologists, who classified each audiogram as either indicating normal hearing or hearing loss. The outline 
of the research described in the paper P1 is presented in Figure 2. 
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Fig. 2. An overview of the aim of paper P1. 

In order to identify the most effective method for classifying the audiometry data, the paper explored various 
deep learning architectures. Each model has been assessed using k-fold cross-validation [24], which 
consists of dividing the data into k subsets and training the model k-times with k-1 subsets, with a different 
subset being used for testing in every iteration. The presented research used k = 5, which resulted in train 
to test dataset proportions of 80% to 20%, respectively. The general workflow of the study is shown in Fig. 3. 

 

Fig. 3. The systematic approach to processes resulting in model evaluation [2]. 

 

In the discussed paper, the following artificial neural network architectures were used: 

(a) Multilayer Perceptron (MLP) [25]: 

The multilayer perceptron is the most prominent and commonly employed neural network architecture. 
It can be used to construct standalone networks as well as segments of considerably more intricate 
models, which will be discussed in detail later. The structure of the MLP is delineated by its design, 
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which comprises an input layer, one or more hidden layers, and an output layer. The network is 
completely connected, indicating that each unit obtains connections from all units in the prior layer. This 
implies that each unit has its own bias, and there is a weight associated with every pair of units in two 

consecutive layers. Therefore, the calculations for the 𝑙’th hidden layers of the network can be 

articulated as: 

ℎ𝑖
(1)

= 𝜃(1) (∑ 𝑤𝑖𝑗
(1)

𝑥𝑗 +

𝑗

𝑏𝑖
(1)

) , 

ℎ𝑖
(2)

= 𝜃(2) (∑ 𝑤𝑖𝑗
(2)

ℎ𝑗
(1)

+

𝑗

𝑏𝑖
(2)

) , 

… 

𝑦𝑖 = 𝜃(𝑙) (∑ 𝑤𝑖𝑗
(𝑙)

ℎ𝑗
(𝑙−1)

+

𝑗

𝑏𝑖
(𝑙)

), 

where the 𝑥𝑗 are the inputs to the unit and the 𝑤𝑖𝑗
(𝑙)

are the weights, the 𝑏𝑖
(𝑙)

 is the bias and 𝜃(𝑙)  is the 

nonlinear activation function respected to layer 𝑙. Moreover, the 𝑦𝑖 is the activation of the output unit. It 
is important to recognize that each hidden layer may utilize distinct activation functions; nevertheless, 
the Rectified Linear Unit (ReLU) is currently the most prevalent activation function employed in hidden 
layers: 

𝑓(𝑥) = 𝑅𝑒𝐿𝑈(𝑥) = 𝑚𝑎𝑥(0, 𝑥). 

Concerning the output layer (𝑦𝑖), pertaining to the 𝑘-class classification problem, the softmax function 

determines the output probabilities:  

𝑦𝑖 =
𝑒ℎ𝑖

∑ 𝑒ℎ𝑗𝑘
𝑗=1

 𝑓𝑜𝑟 𝑖 = 1,2, … , 𝑘, 

where 𝑘 is the number of classes and ℎ𝑖 is the output from the last layer before applying softmax. When 

the probability y has been established, 𝐿 the difference between the predicted output and the expected 

value is evaluated by the loss function 𝐿.. In classification tasks, the latter is realized via cross-entropy 

loss: 

𝐿𝑐𝑟𝑜𝑠𝑠−𝑒𝑛𝑡𝑟𝑜𝑝𝑦 = − ∑ 𝑦𝑖𝑙𝑜𝑔((𝑦̂𝑖) )

𝑘

𝑖=1

, 

where 𝑦𝑖̂ is the predicted probability for class 𝑖. For the purpose of optimizing the loss function (𝐿), the 

gradient descent optimization algorithm is utilized to determine the 𝛥𝐿: 

𝛥𝑤𝑖 = −𝛼
𝜕𝐿

𝜕𝑤𝑖
 

where α is the learning rate. Using the generated loss value, the chain rule is applied to updating 
individual weights:   
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𝑤𝑛𝑒𝑤 = 𝑤𝑜𝑙𝑑 − 𝛼
𝜕𝐿

𝜕𝑤
, 

where 
𝜕𝐿

𝜕𝑤
  is derivative of loss with respect to weight. 

(b) Convolutional Neural Network (CNN) [26]: 

A Convolutional Neural Network (CNN) represents a category of artificial neural networks that excels in 
processing structured grid data, such as images. A widely adopted form of CNN, resembling the MLP, 
is characterized by several convolutional layers that are succeeded by sub-sampling (pooling) layers, 
culminating in fully connected layers at the end. 

The input 𝑋 for each convolutional layer is represented as a 3D tensor, encompassing values for height, 

width, and depth. The depth, often referred to as the channel number, is three in the case of an RGB 

image, and one for a grayscale image. A convolutional layer contains a set of 𝐾 learnable filters 

(kernels) 𝐾which process the input image to create feature maps. The label 'feature map' refers to the 

representation of the occurrence of certain features in an image, for instance, straight lines, edges, or 
distinct objects. The output of a convolutional layer can be articulated as follows: 

𝑍 = 𝑋 ∗ 𝐾 + 𝑏, 

where 𝑋 is the input image, 𝐾 is the filter (kernel) which performs the convolution operation and 𝑏 is 

the bias term. In addition, after the convolutional operation an activation function is used to introduce 
non-linearity (ReLU). Afterward, pooling layers are typically employed, aiming to downsample the 
feature maps created by the convolutional layer into a smaller quantity of parameters, consequently 
lowering computational complexity and improving management of overfitting. The most widely used 
pooling operation is referred to as max pooling, which is defined as: 

𝑃𝑖,𝑗 = 𝑚𝑎𝑥𝑚,𝑛𝑍𝑖+𝑚,𝑗+𝑛, 

where 𝑚 and 𝑛 define the pooling window size. After the image undergoes the feature-learning 

procedure utilizing convolutional and pooling layers, the result from the last pooling layer is converted 
into a vector and then directed through one or more fully connected layers (MLP). In classification tasks, 
the final output probabilities are obtained by utilizing the softmax function. Analogous to MLP, the 
backpropagation process is utilized to enhance the loss function, which is mainly cross-entropy in 
classification scenarios. It is essential to underscore that the optimization process relates to both the 
weights of the fully connected layers and the filters employed in the convolutional layers, including the 
biases in those types of layers. 

(c) Recurrent Neural Network (RNN) [27]: 

Recurrent Neural Networks (RNN) are a type of neural network architecture mainly used for detecting 
patterns in sequential data, including handwriting, genomes, text, or numerical time series that are 
commonly generated in industrial environments. Unlike MLP, which transmit information in a 
unidirectional manner without cycles, RNNs incorporate cycles that allow them to relay information back 
into their own structure. This capability enhances the performance of Feedforward Networks by 
integrating previous inputs. 

The essential part of an RNN is the recurrent layer, which, unlike feedforward networks that process all 
inputs at once, handles one input at a time for each time step. This sequential processing allows the 

network to maintain a dynamic that changes over time. At every time step 𝑡, the RNN takes an input 𝑥𝑡 

and updates its hidden state ℎ𝑡, relying on the previous hidden state ℎ𝑡−1 and the current input. 

Mathematically, this update can be defined as: 

ℎ𝑡 = 𝑓(𝑊ℎℎ𝑡−1 + 𝑊𝑥𝑥𝑡 + 𝑏), 
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where 𝑊ℎ is the weight matrix for the hidden state, 𝑊𝑥 is the weight matrix for the input, 𝑏 is the bias 

vector and 𝑓 is an activation function (e.g. ReLU). The output at each time step can be computed as: 

𝑦𝑡 = 𝑊𝑦ℎ𝑡 + 𝑏𝑦, 

where 𝑊𝑦 is the weight matrix for the output layer and 𝑏𝑦 is the output bias. Similarly to MLP and CNN, 

the RNN loss function quantifies the disparity between the predicted and expected outputs, however 

cross-entropy loss also accounts for the total number of time steps 𝑇: 

𝐿𝑅𝑁𝑁 = − ∑ ∑ 𝑦𝑡,𝑖𝑙𝑜𝑔 (𝑦̂𝑡,𝑖

𝑘

𝑖=1

𝑇

𝑡=1

), 

where 𝑘 is the number of classes, 𝑦(𝑡,𝑖) is the true label, and ŷ(𝑡,𝑖) is the predicted probability for class 𝑖 

at time step 𝑡. The architecture of RNNs incorporates a specialized backpropagation method termed 
Backpropagation Through Time (BPTT) [34], which is utilized to optimize the loss function and 
subsequently update the weights and biases. This approach involves unrolling the RNN temporally, thus 
treating it as a feedforward network for the duration of the sequence. Each timestep of the unrolled 
recurrent neural network can be seen as an extra layer due to the order dependency of the issue, with 
the internal state from the preceding timestep serving as input for the succeeding timestep. 

(d) Gated Recurrent Units (GRU) [28]: 

Gated Recurrent Units, as proposed by Cho et al. [28], are a form of RNNs that incorporates gating 
mechanisms to facilitate better information flow management and to mitigate the challenges of vanishing 
and exploding gradients when learning long-term dependencies. The structure of a GRU merges the 
hidden state and cell state into a single state and includes two gates: the update gate and the reset 
gate. Thus, the functionality of a GRU realized via the following operations: 

▪ Update Gate: 𝑧𝑡 = 𝜎(𝑊𝑧𝑥𝑡 + 𝑈𝑧ℎ𝑡−1 + 𝑏𝑧); 

▪ Reset Gate: 𝑟𝑡 = 𝜎(𝑊𝑟𝑥𝑡 + 𝑈𝑟ℎ𝑡−1 + 𝑏𝑟); 

▪ Candidate Activation: ℎ̃𝑡 = 𝑡𝑎𝑛ℎ (𝑊ℎ𝑥𝑡 + 𝑈ℎ(𝑟𝑡 ⊙ ℎ𝑡−1) + 𝑏ℎ); 

▪ Hidden State Update: ℎ𝑡 = (1 − 𝑧𝑡) ⊙ ℎ𝑡−1 + 𝑧𝑡 ⊙ ℎ̃𝑡; 

where 𝜎 is the sigmoid activation function, ⊙ denotes element-wise multiplication, 𝑊 is the weight 

matrix for the input states, 𝑈 is weight matrix for hidden states and 𝑏 are bias vectors. 

Gating mechanisms play a crucial role in preserving significant information across lengthy sequences 
with enhanced efficiency. To begin with, by selectively permitting pertinent information to pass through 
the gates, GRUs mitigate the risk of gradients vanishing completely. Furthermore, owing to the effective 
gating mechanisms, GRUs can frequently be trained more rapidly than conventional RNNs, thereby 
enhancing effectiveness and decreasing the number of necessary training iterations. 

(e) Long Short-Term Memory (LSTM) [27]: 

Long Short-Term Memory (LSTM) introduced by Sepp Hochreiter and Jurgen Schmidhuber [27] is an 
advanced form of RNN, similar to GRU, designed specifically to resolve the vanishing gradient problem. 
However, LSTM is more widely used than GRU because of its superior performance in tasks that require 
long-term memory, particularly in the area of natural language processing. LSTM can be differentiated 
from GRU by its more elaborate architecture, which consists of three gates: an input gate, a forget gate, 
and an output gate, compared to the two gates present in GRU (update and reset gates). The hidden 

state ℎ𝑡 and cell state 𝑐𝑡 of LSTM are updated using the following operations: 

• Forget Gate: 𝑓𝑡 = 𝜎(𝑊𝑓𝑥𝑡 + 𝑈𝑓ℎ𝑡−1 + 𝑏𝑓); 

• Input Gate: 𝑖𝑡 = 𝜎(𝑊𝑖𝑥𝑡 + 𝑈𝑖ℎ𝑡−1 + 𝑏𝑖), 𝑐̃𝑡 = 𝑡𝑎𝑛ℎ (𝑊𝑐𝑥𝑡 + 𝑈𝑐ℎ𝑡−1 + 𝑏𝑐); 

• Cell State Update: 𝑐𝑡 = 𝑓𝑡 ⊙ 𝑐𝑡−1 + 𝑖𝑡 ⊙ 𝑐̃𝑡; 
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• Output Gate: 𝑜𝑡 = 𝜎(𝑊𝑜𝑥𝑡 + 𝑈𝑜ℎ𝑡−1 + 𝑏0), ℎ𝑡 = 𝑜𝑡 ⊙ 𝑡𝑎𝑛ℎ (𝑐𝑡); 

where 𝜎 represents the sigmoid activation function, ⊙ signifies element-wise multiplication, 𝑊 denotes 

the weight matrix associated with the input states, 𝑈 refers to the weight matrix for hidden states and 𝑏 

indicates the bias vectors. 

The design of all models was analogous in terms of their layers, starting with the input layer, followed by a 
specialized network layer (MLP, CNN, RNN, GRU, or LSTM) that included 12 neurons and employed a 
ReLU activation function, and subsequently applying Dropout at a rate of 10%. The following layer was 
another specialized network, this time made up of 6 neurons and also utilizing a ReLU activation function. 
Again, a Dropout layer was applied at a rate of 10% to help mitigate the risk of overfitting. The network 
architectures concluded with a dense layer that contained two neurons and a softmax activation function. 
The shape of the input layer was consistent across MLP, RNN, GRU, and LSTM, which was (2,12) – 
covering information from both conditions (air on bone) across a range of 12 frequencies. Additionally, the 
CNN input layer required an extra dimension to accommodate the number of colors, resulting in a shape of 
(2,12,1). 

Initial investigations evaluated Multilayer Perceptron (MLP), Convolutional (CNN), and Recurrent (RNN) 
neural networks, yielding accuracy rates of 94.58%, 95.63%, and 96.04%, respectively. The RNN 
architecture demonstrated the highest classification performance, prompting further exploration of RNN-
based architectures, including Gated Recurrent Units (GRU) and Long Short-Term Memory (LSTM). Both 
models exhibited comparable accuracy, achieving 97.71% for GRU and 98.12% for LSTM. Furthermore, 
the confusion matrices and ROC curve with the AUC parameter were analyzed for each model, revealing 
that the LSTM model attained the best scores across all metrics. 

In conclusion, this study proposed an AI-driven method for classifying audiograms as either normal or 
pathological, aimed at supporting referral decisions in primary care. Using a dataset of 2,400 expert-labeled 
pure audiometry data, the authors trained and compared MLP, CNN, and RNN models. The LSTM-based 
RNN achieved the highest accuracy (98.12%), which meets the predetermined margin of error standards 
and surpasses the 97.5% classification accuracy of the leading algorithm for audiogram data classification, 
as proposed by Crowson et al. [21]. It is important to highlight that this study focused solely on binary 
classification, whereas Crowson et al. [21] provided a methodology for the complete four-class classification. 

3.2.1.  Author’s contribution to the state of the art 

This section summarizes paper (P1) in the context of author’s contribution to the state of the art in the area 
of automated classification of pure tone audiometry data. The paper contributes in the following subjects: 

✓ While previous studies have explored aspects of audiogram interpretation, this work delivers a 
complete end-to-end binary classification system (normal vs pathological) using machine learning.  

✓ This study is among the first to apply RNN architectures (LSTM, GRU) specifically to audiogram 
data, treating hearing thresholds across frequencies as sequential patterns.  

✓ The paper demonstrates that temporal dependencies in audiometric patterns can be effectively 
captured using RNNs, outperforming traditional MLPs. 

✓ The research achieves a 98% accuracy rate with LSTM, setting a high benchmark for audiometry 
data classification compered to state-of-the-art. 

✓ The paper positions the developed AI model as a referral support tool in the clinical workflow, aiming 
to support GPs in low-resource settings and accelerate diagnosis. 

3.3. Classification of three types of hearing loss 

This section provides a summary of the papers (P2, P3) concerning the classification of three types of 
hearing loss. Section 3.2.1 outlines the findings from conference paper P2, titled "Detecting Types of 
Hearing Loss Using Various AI Classification Methods: A Performance Review," whereas section 3.2.2 
presents the results from the extended conference paper published as a journal article entitled "Efficiency 
of Artificial Intelligence Methods for Hearing Loss Type Classification: an Evaluation". The research workflow 
of the papers P2 and P3 is presented in Figure 4. 
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Fig. 4. Research workflow of papers P2 and P3. 

3.3.1. Detecting type of hearing loss with different AI classification methods 

The paper P2 presents a comprehensive examination of the ways in which artificial intelligence (AI), 
especially machine learning and deep learning methodologies, can be employed to categorize various types 
of hearing loss (mixed hearing loss, conductive hearing loss and sensorineural hearing loss) using raw pure 
tone audiometry data. The impetus for this study arises from the increasing need for rapid, precise, and 
economical diagnostic instruments that can assist audiologists in more effectively recognizing hearing 
deficiencies. 

In the initial phase, the listed below machine learning classification algorithms were evaluated.  

(a) Gaussian Naive Bayes [29]: 

The foundation of the Gaussian Naive Bayes is Bayes' theorem, which can be expressed as 

𝑃(𝐶|𝑋) =
𝑃(𝑋|𝐶) ∙ 𝑃(𝐶)

𝑃(𝑋)
, 

Where 𝑃(𝐶|𝑋) is the probability of class 𝐶 given the feature vector 𝑋, 𝑃(𝑋|𝐶) is the probability 

of observing features X given class 𝐶, 𝑃(𝐶) is the prior probability of class C, 𝑃(𝑋) is the total 

probability of observing features 𝑋. 

In the Naive Bayes classifier, it is presumed that the features are independent. 

𝑃(𝑋|𝐶) = 𝑃(𝑥1, 𝑥2, … , 𝑥𝑛|𝐶) = 𝑃(𝑥1|𝐶) ⋅ 𝑃(𝑥2|𝐶) ⋯ 𝑃(𝑥𝑛|𝐶), 

where 𝑥1, 𝑥2, … , 𝑥𝑛 are the individual features of the vector 𝑋. 

Also, we operate under the assumption that the features conform to a normal distribution. The 

likelihood of feature 𝑥𝑖 belonging to class 𝐶 can be represented by the probability density function 

of the normal distribution: 

𝑃(𝑥𝑖|𝐶) =
1

√2𝜋𝜎2
𝑒

−(𝑥𝑖−𝜇)
2

2𝜎2 , 

where 𝜇is the mean of the feature in class 𝐶 and 𝜎2 is the variance of the feature in class 𝐶. 

To classify a new feature vector 𝑋, the probability for each class 𝐶𝑘 is computed. 

𝑃(𝐶𝑘|𝑋) ∝ 𝑃(𝐶𝑘) ⋅ 𝑃(𝑋|𝐶𝑘), 
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𝑃(𝑋|𝐶𝑘) = ∏ 𝑃(𝑥𝑖|𝐶𝑘).

𝑛

𝑖=1

 

In the end, the class 𝐶𝑘 with the highest likelihood is selected as the final candidate: 

𝐶̂ = 𝑎𝑟𝑔𝑚𝑎𝑥𝐶𝑘
𝑃(𝐶𝑘|𝑋). 

(b) K-Nearest Neighbors (KNN) [30]: 

The k-NN algorithm categorizes a new instance by considering the predominant class among its 

𝑘closest neighbors within the feature space. Steps of the k-NN Algorithm: 

• Determine the number of nearest neighbors 𝑘, that should be considered for the purpose 

of classification. 
• To determine the distance for a particular test instance 𝑥, assess the distance between 𝑥 

and all training instances 𝑥𝑖, employing techniques like Euclidean Distance (𝑑(𝑥, 𝑥𝑖)). 

𝑑(𝑥, 𝑥𝑖) = √∑ (𝑥𝑗 − 𝑥𝑖𝑗)
2𝑚

𝑗=1 , 

where m is the number of features, and 𝑥𝑖𝑗 is the 𝑗-th feature of the 𝑖-th training instance. 

• Sort the distances 𝑑(𝑥, 𝑥𝑖) and select the 𝑘 training instances with the smallest 

distances donated as 𝑥(1), 𝑥(2), … , 𝑥(𝑘). 

• Determine the class labels of the 𝑘 nearest neighbors. The predicted class label C(x) 

for the test instance x is given by: 

𝐶̂(𝑥) = 𝑎𝑟𝑔𝑚𝑎𝑥𝑐 (∑ 𝐼(𝐶(𝑥(𝑖)) = 𝐶)

𝑘

𝑖=1

), 

where 𝐼 is the indicator function that equals 1 if the condition is true and 0 otherwise. 

(c) Logistic Regression [31]: 

Logistic regression delineates the relationship between a binary dependent variable and one or 
more independent variables by means of the logistic function. The model's output is a probability 
value that ranges from 0 to 1, which can be understood as the probability of the input belonging to 
a certain class. 

The primary step in logistic regression is to determine a linear combination of the input features. For 

a given input vector 𝑥 = [𝑥1, 𝑥2, … , 𝑥𝑛], the linear combination can be expressed as: 

𝑧 = 𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2 + ⋯ + 𝛽𝑛𝑥𝑛 = 𝛽𝑇𝑥, 

where 𝛽0 is the intercept (bias term), 𝛽1, 𝛽2, … , 𝛽𝑛 are the coefficients (weights) for each feature 

and β is the vector of coefficients. 

Subsequently, the result of the linear combination 𝑧 is transmitted through the logistic (sigmoid) 

function to generate a probability: 

𝑃(𝑌 = 1|𝑥) = 𝜎(𝑥) =
1

1 + 𝑒−𝑧
, 
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where 𝑃(𝑌 = 1 ∨ 𝑥) is the probability that the output 𝑌 is 1 given the input 𝑥 𝜎(𝑧) is the logistic 

function. 

In order to reach a classification decision, a threshold T (typically set at 0.5) is utilized on the 
predicted probability. 

𝐶̂(𝑥) = {
1, 𝑃(𝑌 = 1|𝑥) ≥ 𝑇
0,                    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

To effectively train the logistic regression model, optimizing the coefficients β is necessary. The cost 
function utilized is the log loss (cross-entropy loss), which assesses the difference between the 
predicted probabilities and the true class labels: 

𝐽(𝛽) =
−1

𝑚
∑[𝑦(𝑖)𝑙𝑜𝑔 (𝑃(𝑌 = 1|𝑥(𝑖))) + (1 − 𝑦(𝑖))𝑙𝑜𝑔 (1 − 𝑃(𝑌 = 1|𝑥(𝑖)))]

𝑚

𝑖=1

, 

where m is the number of training examples, 𝑦(𝑖) is the actual label for the i-th example and 𝑥(𝑖) is 

the 𝑖-th training example. 

(d) Support Vector Machines (SVMs) [32]: 

The essential idea of Support Vector Machines (SVMs) is to discover a hyperplane that most 
effectively separates the data points of various classes in the feature space. The hyperplane is 
selected to ensure that the margin is as large as possible. The margin is defined as the space 
between the hyperplane and the nearest data points from either class, which are referred to as 
support vectors. 

When addressing a binary classification problem, consider a dataset that contains 𝑛 training 

examples, with each example depicted as a feature vector 𝑥𝑖 and a corresponding label 𝑦𝑖 (where 

𝑦𝑖 ∈ {−1,1}). The aim is to determine a hyperplane defined by the equation: 

𝑤𝑇𝑥 + 𝑏 = 0, 

where w is the weight vector (normal to the hyperplane) and 𝑏is the bias term. The decision function 

for classifying a new instance x is given by: 

𝐶̂(𝑥) = 𝑠𝑔𝑛(𝑤𝑇𝑥 + 𝑏), 

𝑠𝑔𝑛 = {
−1, 𝑥 < 0
0, 𝑥 = 0
1, 𝑥 > 0

 

In order to optimize the margin, it is essential to accurately classify the data points and maximize 

the distance from the hyperplane to the closest points, known as support vectors. The margin 𝛾 can 

be defined as: 

𝛾 =
2

‖𝑤‖
. 

In order to identify the optimal hyperplane, it is essential to minimize the norm of the weight vector 

‖𝑤‖while ensuring that all training examples are accurately classified: 

⋁ 𝑦𝑖  (𝑤𝑇 𝑥𝑖 + 𝑏) ≥ 1

𝑖

. 
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To address the aforementioned quadratic programming issue involving inequality constraints, the 
method of Lagrange multipliers can be employed. Consequently, the Lagrange function is defined 
as follows: 

𝐿(𝑤, 𝑏, 𝛼) =
1

2
𝑤2 + ∑ 𝛼𝑖(𝑦𝑖(𝑤𝑇𝑥𝑖 + 𝑏) − 1),

𝑛

𝑖=1

 

where 𝑎𝑖 are the Lagrange multipliers. 

(e) Stochastic Gradient Descent (SGD) [33]: 

The objective of the SGD classifier is to reduce a loss function 𝐿(𝑤), which evaluates the model's 

effectiveness in classifying the data. For a given dataset {(𝑥𝑖 , 𝑦𝑖)}𝑖=1
𝑛

, where 𝑥𝑖 is the feature 

vector and 𝑦𝑖 is the class label, the loss function can be defined as: 

𝐿(𝑤) =
1

𝑛
∑ 𝑙(𝑦𝑖 , 𝑓(𝑥𝑖; 𝑤)),

𝑛

𝑖=1

 

where l is the loss function and 𝑓(𝑥𝑖; 𝑤) is the model function with parameters 𝑤. 

In the next step the gradient of the loss function L(w) with respect to the parameters w is computed: 

𝛻𝐿(𝑤) =
𝜕𝐿(𝑤)

𝜕𝑤
. 

Within the framework of the SGD algorithm, the modification of the parameters w occurs based on 
an individual example as demonstrated here: 

𝑤 ← 𝑤 − 𝜂𝛻𝑙(𝑦𝑖 , 𝑓(𝑥𝑖; 𝑤)), 

where η is the learning rate and 𝛻𝑙(𝑦𝑖 , 𝑓(𝑥𝑖; 𝑤)) is the gradient of the loss function.  

The algorithm carries out the aforementioned procedures for all examples in the dataset over a 
series of epochs. In each epoch, the examples are shuffled in a random manner, which introduces 
randomness into the update process and helps to prevent local minima. 

(f) Decision Tree [34]: 

The Decision Tree classification algorithm creates a model that resembles a tree structure, where 
every internal node signifies a decision based on a specific feature, each branch illustrates the 
outcome of that decision, and each leaf node corresponds to a class label. For a given dataset  

𝐷 = {(𝑥𝑖 , 𝑦𝑖)}𝑖=1
𝑛

, 

where each instance is represented by a feature vector x and a corresponding class label y. The 

main aim of the Decision Tree algorithm is to divide the dataset 𝐷 into subsets that are as uniform 

as possible in relation to the target class. The frequently used criteria for evaluating the impurity of 
a node is entropy. The entropy of a dataset D is given by: 

𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝐷) = − ∑ 𝑝𝑖𝑙𝑜𝑔2(𝑝𝑖)

𝐶

𝑖=1

. 
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Subsequently, the Information Gain is calculated, which quantifies the decrease in entropy or 
impurity following the division of a dataset based on a feature. This metric aids in identifying the 
optimal feature for splitting at each node. The formula for Information Gain is: 

𝐼𝐺(𝐷, 𝐴) = 𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝐷) − ∑
|𝐷𝑣|

|𝐷|
𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝐷𝑣)

𝑣∈𝑉𝑎𝑙𝑢𝑒𝑠(𝐴)

, 

where 𝐼𝐺(𝐷, 𝐴) is the information gain of dataset D when splitting on attribute 𝐴, 𝑉𝑎𝑙𝑢𝑒𝑠(𝐴) are 

the possible values of attribute 𝐴, 𝐷𝑣 is the subset of 𝐷 for which attribute 𝐴 has value v, 𝐷 ∨ is 

the total number of instances in dataset D and 𝐷𝑣 ∨ is the number of instances in subset 𝐷𝑣. 

The Decision Tree algorithm chooses the feature that provides the highest information gain for 
splitting the dataset. This recursive process is carried out for each subset until a stopping criterion 
is reached (for example maximum depth of the tree). 

 

(g) Random Forest [35]: 

The Random Forest classifier can be regarded as an advanced or ensemble variant of the Decision 
Tree algorithm. Whereas a solitary Decision Tree generates predictions through a sequence of data 
splits, the Random Forest constructs numerous Decision Trees and amalgamates their results to 
enhance overall efficacy. This technique is called bootstrapping, which produce various subsets of 

the training data. For each tree t in the forest, a bootstrap sample 𝐷𝑡  is generated by randomly 

drawing n instances from D with replacement: 

𝐷𝑡 = {(𝑥𝑖1
, 𝑦𝑖1

), (𝑥𝑖2
, 𝑦𝑖2

), … , (𝑥𝑖𝑛
, 𝑦𝑖𝑛

)}, 

where 𝑖𝑗 are randomly selected indices from the original dataset 𝐷. In constructing each decision tree, 

a random subset of features is chosen for each split. Let 𝑚 denote the total number of features, and a 

subset of m′ features is selected, with 𝑚′ being less than m. The number of features considered at each 

split is a hyperparameter indicated as m′. For each individual tree t, the algorithm develops a decision 

tree 𝑇𝑡 through the use of the bootstrap sample 𝐷𝑡 and the selected features. The criterion for splitting 

can be founded on entropy. Once all trees 𝑇𝑡 are built, predictions for a new instance 𝑥 are made by 

aggregating the predictions from all trees: 

𝐶̂ = 𝑚𝑜𝑑𝑒(𝑇1(𝑥), 𝑇2(𝑥), … , 𝑇𝑇(𝑥)), 

where T is the total number of trees in the forest. The mode is calculated by determining which class 
label appears most frequently among the predictions from all the trees. 

The second phase of the research focused on assessing the following Artificial Neural Network (ANN) 
architectures: Feedforward Neural Network (FNN/MLP), Convolutional Neural Network (CNN) Recurrent 
Neural Network (RNN). Furthermore, an analysis was conducted to evaluate the performance of the Graph 
Neural Network (GNN) [36] on audiometry data. GNNs represent a category of neural networks specifically 

engineered to function on graph data, necessitating the transformation of input data into a graph 𝐺 =
(𝑉, 𝐸), where 𝑉 is the set of nodes (vertices) and 𝐸 is the set of edges connecting the node. Each node 

𝑣𝑖 ∈ 𝑉 can have an associated feature vector𝑥𝑖 ∈ 𝑅𝑑 ,where d is the dimensionality of the feature space. 

The essential function in GNNs is the message passing mechanism, consisting of two key phases: message 
aggregation (nodes gather and integrate messages from adjacent nodes) and node update (nodes modify 
their representations utilizing the aggregated messages). Typically, the message passing procedure is 
reiterated T times according to the following methodology: 
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Firstly, for each node 𝑣𝑖 , messages are relayed from its neighbors 𝑁(𝑖). The message from neighbor 

𝑣𝑗 directed to 𝑣𝑖 can be articulated as follows: 

𝑚𝑖𝑗
(𝑡)

= 𝑀𝑒𝑠𝑠𝑎𝑔𝑒(𝑥𝑖
(𝑡)

, 𝑥𝑗
(𝑡)

, 𝑒𝑖𝑗), 

where 𝑚𝑖𝑗
(𝑡)

 denotes the message transmitted from node 𝑣𝑗 to node 𝑣𝑖 during iteration t, and 

𝑀𝑒𝑠𝑠𝑎𝑔𝑒 is a function (e.g. element-wise sum, mean or max) that processes the message based on 

the characteristics of the nodes and the edge. Thus, for node 𝑣𝑖 the message is computed as: 

𝑚𝑖
(𝑡)

= ∑ 𝑚𝑖𝑗
(𝑡)

.

𝑗∈𝑁(𝑖)

 

On the basis of these aggregated messages, the GNN layer updates the features of source node 𝑖. At 

the conclusion of this update process, the node ought to be aware of both its own characteristics and 
those of its neighbouring nodes. This is achieved by integrating the feature vector of node 𝑖 with the 

aggregated messages. Thus, the update function 𝑈 can be defined as: 

𝑥𝑖
(𝑡+1)

= 𝑈(𝑥𝑖
(𝑡)

, 𝑚𝑖
(𝑡)

), 

The outputs can serve multiple downstream purposes, such as classifying nodes or graphs and 
predicting edges. 

The models were developed utilizing a dataset of 4007 rows of audiometry data, which was categorized by 
experienced audiologists. The input data series comprised of vertical information regarding tonal points of 
both air and bone conduction, represented as volume (dB) for specific frequencies (Hz), sourced from XML 
files. The frequency spectrum of the dataset encompassed 250Hz, 500Hz, 1000Hz, 2000Hz, and 4000Hz. 

Given that GNN necessitates graph input, the audiometry data was converted into a directed graph 
comprising 10 nodes and 18 edges. Frequency and loudness values were allocated to the nodes and the 
classification of hearing loss types in GNN was done in graph-level. Figure 5 illustrates a visual 
representation of the graph. 

 

Figure 5. The GNN architecture's input graph structure [3]. 

The architectures of the developed artificial neural networks followed the general structure outlined in paper 
P1 (section 3.2), with the main difference being the shape of the input layer. The latter was structured as (5, 
2), since this research examined the five primary frequencies (250, 500, 1000, 2000 and 4000 Hz) for both 
conductions. 

All tested methods have been implemented in Python 3.10 in Jupyter Notebook environment. The 
implementations of machine learning classification algorithms have been imported from the scikit-learn 
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module [37]. The neural networks have been implemented in Keras/Tensorflow [38]. Due to the vast number 
of algorithms and neural network architectures examined, computational resources from the Centre of 
Informatics - Tricity Academic Supercomputer & Network (CI TASK) were employed to train the models. 

In the realm of machine learning algorithms, the Support Vector Machine classifier has demonstrated the 
most impressive results, achieving an accuracy of 83.38%. This algorithm also excelled in metrics such as 
precision, recall, F1 score and AUC. Following closely behind, the Logistic Regression and Random Forest 
models also surpassed the 80% accuracy threshold. Among the artificial neural network models evaluated, 
the RNN emerged as the top performer, attaining an accuracy of 94.46% and a F1 score of 94.45%, excelling 
in precision, recall, and AUC as well. The CNN model ranked second, with an accuracy of approximately 
93.46%, which may come as a surprise since CNNs are typically utilized for image analysis. This 
phenomenon was attributed to the fact that CNNs excel at extracting data and patterns from matrices, and 
a single audiometry test result could be interpreted as a small (5x2) matrix. The FFN model generally 
secured third place with an accuracy of 89.67%, while the GNN model recorded the lowest scores at 
83.15%. 

In conclusion, the study presented in paper P2 sought to evaluate various AI-driven algorithms for the 
classification of discrete tonal audiometry data series into three categories of hearing loss: sensorineural, 
conductive, and mixed. The Recurrent Neural Network achieved the highest classification accuracy, 
reaching 94.46%. Although multiple AI models demonstrated encouraging outcomes, no single approach 
consistently surpassed the others across all situations. Consequently, additional efforts were required to 
focus on enlarging the dataset and enhancing RNN models with respect to accuracy. 

3.3.2. Efficiency of Artificial Intelligence Methods for Hearing Loss Type 
Classification 

The article P3 serves as an extension of the conference paper P2. This study has been broadened to 
incorporate several new AI models and to deliver a more comprehensive evaluation of the employed deep 
learning algorithms, which includes an analysis of the influence of different data preprocessing techniques 
on the classification of hearing loss types. Additionally, the extended paper addresses the implications of 
augmenting the training dataset through the application of a generative adversarial network (GAN) [51]. The 

GAN consists of two neural networks, a generator 𝐺 and a discriminator 𝐷, that are trained simultaneously 

through adversarial training. The GAN could be formally defined as: 

Let 𝑋 be the data distribution from which samples are to be generated. The goal of the GAN is to 

learn a mapping from a latent space 𝑍 to the data space 𝑋. 

Generator G is a function that maps a random noise vector 𝑧 ∈ 𝑍 to a data sample 𝑥 ∈ 𝑋: 

𝑥 = 𝐺(𝑧; 𝜃𝐺), 

 where 𝜃𝐺  are the parameters of the generator. 

Discriminator D  is a function that takes a data sample 𝑥 and outputs a probability 𝐷(𝑥; 𝜃𝐷) that 

indicates whether the sample is real (from the data distribution) or fake (generated by G): 

𝐷(𝑥; 𝜃𝐷) = 𝑃(𝐷 = 1|𝑥), 

where 𝜃𝐷 are the parameters of the discriminator. 

The training process of GANs can be conceptualized as a two-player minimax game, in which the 
generator seeks to reduce the likelihood of the discriminator accurately identifying generated 
samples, whereas the discriminator strives to enhance its classification precision. The objective 
function can be articulated as: 

𝑚𝑖𝑛𝐺𝑚𝑎𝑥𝐷𝑉(𝐷, 𝐺) = 𝐸𝑥𝑝𝑑𝑎𝑡𝑎
[𝑙𝑜𝑔𝐷(𝑥)] + 𝐸𝑧𝑝𝑧

[𝑙𝑜𝑔 (1 − 𝐷(𝐺(𝑧)))], 
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where 𝑝𝑑𝑎𝑡𝑎 is the real data distribution, 𝑝𝑧 is the distribution of the latent variable 𝑧, 𝐸𝑥𝑝𝑑𝑎𝑡𝑎
[𝑙𝑜𝑔𝐷(𝑥)] 

is expected value of the logarithm of the probability that real samples 𝑥 are classified as real by the 

discriminator D and 𝐸𝑧𝑝𝑧
[𝑙𝑜𝑔 (1 − 𝐷(𝐺(𝑧)))] is expected value of the logarithm of the probability 

that samples generated by G are classified as fake by the discriminator D. 

The presented research utilized a conditional generative adversarial network (CGAN) [39], which represents 
a modification of the GAN framework that includes labels as extra data during the training stage. 
Consequently, this method resulted in an increase of the size of the dataset by a factor of two. 

In a manner akin to P2, artificial intelligence and machine learning models have been applied to automatic 
classification of hearing loss types—conductive, sensorineural, or mixed—using pure-tone audiometry data 
based on 4,007 audiometry samples, each labeled by professional audiologists. Furthermore, a more 
comprehensive assessment was conducted focusing on advanced RNN models, specifically the Gated 
Recurrent Unit (GRU) and Long Short-Term Memory (LSTM). Additionally, the research examined the 
effects of standard data preprocessing methods, including the normalization and scaling of audiometric 
features, on the ultimate accuracy value. The evaluation encompassed standardization techniques such as 
Z-Score (1), MinMax (2), and MaxAbs Scaler (3): 

𝑧𝑠𝑐𝑜𝑟𝑒 =
𝑥 − 𝜇

𝜎
(1), 

𝑧𝑚𝑖𝑛𝑚𝑎𝑥 =
𝑥 − 𝑚𝑖𝑛

𝑚𝑎𝑥 − 𝑚𝑖𝑛
(2), 

𝑧𝑚𝑎𝑥𝑎𝑏𝑠 =
𝑥

|𝑚𝑎𝑥|
(3), 

where 𝑥 is the raw score, μ is the mean, σ is the standard deviation, 𝑚𝑖𝑛 is the minimum value of the 

feature and 𝑚𝑎𝑥 is the maximum value of the feature. Furthermore, additional tests have been conducted 

after expanding the training dataset by means of  a conditional generative adversarial network.  

The efficacy of all evaluated models was measured using 10-fold cross-validation. Additionally, during the 
model evaluation process, the standard 10-fold set was reduced to 90%, leaving 10% to constitute a 
representative test dataset.  Moreover, the separation into training and testing sets was conducted in a way 
that preserved the class proportions present in the complete dataset. This adjustment was made to facilitate 
a meaningful comparison of the performance between models trained with and without data generated by 
the CGAN. 

In terms of machine learning methods, the application of CGAN yielded positive outcomes for only 5 out of 
the 7 algorithms that were examined in the dedicated test dataset. The generation of additional training data 
resulted in increasing the classification accuracy level in SVMs and logistic regression by approximately 5%. 
The largest increase, amounting to 8%, is shown in the SGD results as compared to those without CGAN. 
Table 3 provides a comprehensive overview of the results from this comparison. 

The paper also discusses the influence of normalization strategies on the performance of classification tasks 
utilizing deep learning models. Clearly, the Z-Score normalization technique (1) exhibited exceptional 
performance across all evaluated architectures. The classification accuracy achieved with this method is, 
on average, 35% superior to that obtained with MinMaxScaler (2) and approximately 120% greater than the 
results yielded by MaxAbsScaler (3). 
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Algorithms Default training (acc) Training with CGAN (acc) 

Gaussian Naive Bayes 63.09% 63.59% ⇧ 

K-Nearest Neighbors 80. 29% 79. 05% ⇩ 

Logistic Regression 89.77% 92.51% ⇧ 

Support Vector Machines 90.27% 93.04% ⇧ 

Stochastic Gradient Descent 79.55% 85.53% ⇧ 

Decision Trees 84. 53% 83.29% ⇩ 

Random Forest 87.78% 88.02% ⇧ 

Table 3. An analysis of the performance of machine learning models, both with and without the application 
of CGAN, evaluated on a specific test dataset [5]. 

 

Models Default training (acc) Training with CGAN (acc) 

FNN 95.48% 91.66% ⇩ 

CNN 92.01% 88.19% ⇩ 

RNN 93.40% 94.44% ⇧ 

LSTM 94.79% 97.56% ⇧ 

GRU 92.70% 92.70% ⇔ 

Table 4. The performance comparison of deep learning models, trained with CGAN versus those without, 
as analyzed on a designated test dataset [5]. 

 

In terms of deep learning architectures, training on the expanded dataset has significantly increased the 
performance of certain deep learning models while impacting the performance of others. In particular, the 
classification accuracy of recurrent networks has increased by nearly 1% in the case of RNN, around 1.5% 
for GRU and nearly 3% for LSTM. On the other hand, the classification effectiveness of FNN and CNN has 
reduced by nearly 3%. Table 4 presents a detailed summary of the findings from the comparison of deep 
learning models, both with and without the use of CGAN. In conclusion, the most favorable outcomes were 
achieved using the Long Short-Term Memory model, which reached a peak classification accuracy of 
97.56% through Z-Score normalization and CGAN data augmentation, which is similar results to state-of-
the art of 97% [21]. Overall, all deep learning models demonstrated significantly superior classification 
performance compared to traditional machine learning algorithms. 
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3.3.3. Author’s contribution to the state of the art 

The papers (P2-P3) contribute in the following subjects: 

✓ A systematic comparison of both traditional machine learning (e.g., Random Forest, SVM) and deep 
learning methods (CNN, RNN, LSTM, etc.) for the specific task of hearing loss type classification 
has been performed. 

✓ Application of a Generative Adversarial Network (GAN) for augmentation in audiology data 
classification. This has shown to mitigate the common problem of small dataset sizes in medical AI, 
improving the generalization and robustness of deep learning models. 

✓ The importance of selecting an appropriate method of data standardization has been investigated, 
revealing that Z-score standardization provides best results for audiometric data. 

✓ The proposed LSTM model demonstrated a classification accuracy of 97.56%, aligning closely with 
the current state-of-the-art performance of 97%.  

✓ The study demonstrates that AI models, particularly LSTM, can reliably assist or even automate the 
classification of hearing loss types, offering time-saving and accuracy benefits in clinical 
environments. 

3.4. Full classification of hearing loss type  

This section is a summary of journal article (P4) entitled „Automated hearing loss type classification based 
on pure tone audiometry data”. 

The article P4 details a deep learning approach that incorporates a Bi-LSTM model to classify hearing loss 
types - normal, conductive, sensorineural, and mixed - automatically, based on raw pure-tone audiometry 
data, with the purpose of aiding clinicians and general practitioners in diagnosis. The main workflow of the 
paper (P4) is presented in Figure 6. 

 

Fig 6.  An overview of the workflow of paper P4. 

The paper proposes a new data classifier model based on the Bi-LSTM architecture, which is a variant of 
Bi-RNN that utilizes two basic LSTMs to analyze input time series in both forward and backward orientations. 
The input layer, which has a shape of (7,2) – 7 timesteps of frequencies in both conductions - is followed by 
a Bi-LSTM layer with 7 neurons and a dropout layer, which helps prevent overfitting. The dropout layer is 
followed by a single LSTM layer with 4 neurons and another dropout layer. The final layer is a Dense one, 
which converts the input 492 parameters to one of four classification categories using the softmax function. 
An overview of the proposed architecture is shown in Figure 7. 
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The model has been trained on a total of 15,046 audiometry test results from 9,663 adult patients. The data 
for each individual measurement (one ear of one patient) comprised seven lists that represented air and 
bone conduction, with hearing levels quantified in decibels across frequencies of 125 Hz, 250 Hz, 500 Hz, 
1000 Hz, 2000 Hz, 4000 Hz, and 8000 Hz, respectively. Three qualified audiologists classified the 
morphologies of hearing loss based on the audiometry test results, categorizing the data into four distinct 
classes: normal hearing, conductive hearing loss, mixed hearing loss and sensorineural hearing loss, in 
accordance with the methodology outlined in the paper. This resulted in 2584 (17.17%) normal samples, 
657 (4.37%) samples of conductive hearing loss, 4028 (26.71%) samples of mixed hearing loss, and 7777 
(51.69%) samples of sensorineural hearing loss. 

Based on previous results in regard of audiometry data (P3), Z-score normalization has been applied to the 
training data and a system of class weight has been introduced to prevent unintended outcomes from 
occurring when processing unbalanced data. 

In order to address the aforementioned class imbalance, the study employs stratified 10-fold cross 
validation. This method is an enhancement of standard 10-fold cross validation, tailored specifically for 
classification challenges where the proportion of target classes remains consistent across each fold as it 
does throughout the entire dataset. 

 

Fig 7. An overview of the proposed Bi-LSTM architecture [6]. 

The findings obtained from the stratified 10-fold cross-validation reveal that the proposed Bi-LSTM model 
successfully classified normal hearing, sensorineural hearing loss, conductive hearing loss and mixed 
hearing loss, achieving an average accuracy of 99.33%. The accuracy varied between 99.00 and 99.73 with 
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a standard deviation of 0.23%, demonstrating stability. Metrics such as precision, recall, and F1 score 
exhibited comparable trends in relation to accuracy. The proposed Bi-LSTM model significantly surpassed 
the current leading method in raw audiometry data classification, which is the C4.5 Decision Tree (DT-J48) 
method introduced by Elbaşı and Obali [20]. The application of the C4.5 classifier to the presented dataset 
yielded an accuracy level consistent with that reported in the original study, with a mean accuracy of 95.64% 
and a standard deviation of 0.69%. In the broader context of the audiogram classification problem, the 
overall accuracy of the proposed model (99.33%) exceeds that of the most effective existing method for 
hearing loss classification (97.5%), as presented by Crowson et al. [21] for raster data. While the numerical 
difference may not be substantial (99.33% compared to 97.5%), the results were derived from a 
considerably more representative dataset (15,046 in the paper versus 1007 samples in Crowson et al [21]). 

In conclusion, this paper introduces a Bi-LSTM-based model designed to classify raw audiometry data into 
categories of normal hearing and three distinct types of hearing loss. This innovative solution enhances the 
classification of hearing loss types, surpassing the existing state-of-the-art methodologies. The findings 
indicate that the proposed neural network-based classifier for audiometry data holds potential for application 
in clinical settings, serving either as a classification tool for general practitioners or as a support system for 
professional audiologists. 

3.4.1.  Author’s contribution to the state of the art 

✓ The proposed model has achieved a classification accuracy of 99.33%, which surpasses the current 
state-of-the-art in raw audiometry data classification, as reported by Elbaşı and Obali [20], who 
achieved an accuracy of 95.5%.  

✓ The proposed solution has also demonstrated superior performance compared to the existing state-
of-the-art in raster audiogram classification, as presented by Crowson et al. [21], which attained an 
accuracy of 97.5%.  

✓ This study was conducted on the largest and most varied tonal audiometry dataset to date, thus 
ensuring that the obtained classification results are representative of real-world performance..  

✓ In contrast to previous methods that depend on audiogram images (Crowson et al. [21]), the 
proposed model utilizes raw air and bone conduction thresholds, enhancing interpretability, 
eliminating variability from different chart formats, and facilitating direct integration into audiometry 
equipment or hospital systems.  

✓ The model introduces a bidirectional LSTM specifically designed to process the frequency-ordered 
characteristics of audiometric data, effectively capturing both local and long-range threshold 
patterns. 

✓ The proposed approach grants professional audiologists the ability to utilize an AI decision support 
system, which may help decrease their workload, improve diagnostic accuracy, and lower the 
likelihood of human error. 

3.5. Summary of pure-tone audiometry classification models 

This section provides a summary of all AI-driven models utilized for the classification of audiometric data as 
detailed in articles P1-P4. In total, 15 distinct machine learning and deep learning models have undergone 
testing. Ultimately, these tests culminated in the creation of the 4-class Bi-LSTM model outlined in P4, which 
is designed for the classification of hearing loss types, including normal hearing. 

K-fold cross-validation served as the primary method for assessing classification models. The evaluation 
metrics taken into account included: accuracy, precision, recall, F1 score, ROC curve with AUC score and 
confusion matrices.  

The nature of the error derived from the error matrix was also considered in the assessment of the models. 
Given that the objective of the study was to implement the findings in a medical context, the main emphasis 
was on eradicating the error that could lead to a patient receiving unsuitable medical treatment due to an 
incorrect classifier outcome. In the context of the audiometric test evaluation issue, this pertains to a situation 
where a patient with any form of hearing impairment is misclassified by the model as having normal hearing. 

Table 5 presents the details of all proposed models in P1-P4 regarding classification of pure tone audiometry 
data in the context of the state-of-the-art. 
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Model Authors Data type Dataset size Classification 
problem 

Accuracy Results 
Published 

C4.5 
(decision 
tree) 

Elbaşı and 
Obali 

Raw 
audiometry 
data 

200 Hearing types: 
normal, 
conductive, 
mixed and 
sensorineural 

95.5% [20] 

ResNet-101 

(CNN) 

Crowson et 
al. 

Audiograms 
(raster data) 

1007 Hearing types: 
normal, 
conductive, 
mixed and 
sensorineural 

97.5% [21] 

LSTM Kassjański et 
al. 

Raw 
audiometry 
data 

2400 Normal and 
hearing loss 

98% P1 

RNN Kassjański et 
al. 

Raw 
audiometry 
data 

4007 Hearing loss 
types: 
conductive, 
mixed and 
sensorineural 

94.46% P2 

LSTM Kassjański et 
al. 

Raw 
audiometry 
data 

4007 Hearing loss 
types: 
conductive, 
mixed and 
sensorineural 

97.56% P3 

Bi-LSTM Kassjański 
et al. 

Raw 
audiometry 
data 

15046 Hearing 
types: normal, 
conductive, 
mixed and 
sensorineural 

99.33% P4 

Table 5: Summary of all proposed models considered in the (P1) — (P4) papers with state of the art 
comparison. 
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4. Processing of tonal audiometry data on mobile devices 

This chapter is a summary of journal article (P5) entitled „Development and testing of an open source mobile 
application for audiometry test result analysis and diagnosis support”. 

The article presents a novel open-source Android application designed to aid clinicians in the analysis of 
audiograms and the diagnosis of hearing loss. Pure-tone audiometry, recognized as the clinical benchmark 
for assessing hearing, is represented through audiograms that necessitate expert interpretation to determine 
the type and severity of hearing loss. To enhance this process, an application that enables users to capture 
and analyse an image of a printed audiogram using a smartphone camera has been created. The workflow 
of the study (P5) is illustrated in Figure 8. 

 

Fig 8. A summary of the research workflow of paper P5. 

 

The processing and classification of pure-tone audiometry test results on mobile devices required their prior 
digitization and transformation from audiogram form. In this context, section 4.1 describes the state-of-the-
art in audiogram data digitalization, while section 4.2 presents the process of developing the mobile 
application. 

4.1. State-of-the-art in audiogram digitalization 

The evaluation of tonal audiometry test outcomes is most precise when performed on raw audiometry data, 
thereby circumventing issues associated with the analysis of audiograms produced by various software. 
Furthermore, it mitigates potential errors that may occur during the generation and printing processes. 
Nevertheless, some clinical settings (such as a general practitioner's office) are limited to the printed results 
of the test, which limits the usability and efficiency of contemporary automated audiogram analysis models. 
In such cases, it is necessary to transition printed audiograms into a digital format. Currently, the literature 
that discusses this specific issue is confined to the publications listed below. 

The initial research was performed by Li et al. [40], who designed various convolutional neural networks to 
extract audiograms, symbols, and axis labels from audiogram images. The synthesis of results from all 
models results in a digital representation of the audiogram. The system showed 98% accuracy on scanned 
images, while it reached 84% accuracy on images captured with a camera. 

Following this, Chairh and Green [41] introduced a novel digitalization tool that employs YOLOv5 for the 
recognition of symbols and Tesseract for the identification of labels. The dataset included 3,200 reports, in 
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comparison to the 420 reports analyzed by Li et al. [40]. This study took into consideration all audiological 
symbols, including those obscured from air and bone conduction. The audiogram, axis label, and symbol 
models achieved mAP@0.5 scores of 84%, 34%, and 39%, respectively. 

The most recent work was performed by Yang et al. [42], who presented a system similar to that of Chairh 
and Green [41], which includes a multi-stage integration of YOLOv5 models paired with an optical character 
recognition (OCR) model. The analysis focused on both pure tone audiometry and sound field testing. The 
accuracy rate at each stage was about 98%, based on 2,535 samples for audiogram detection and 2214 
records for symbol detection. 

In summary, the audiogram digitalization process can be outlined through two principal methodologies: the 
utilization of convolutional neural networks and the incorporation of YOLO together with OCR models. 
Recent innovations in this sector, as highlighted by Yang et al. [42], leverage the latter technique, achieving 
an accuracy rate close to 98%. The heightened accuracy illustrates the effectiveness of integrating YOLO 
and OCR technologies to enhance digitalization efforts, particularly in applications that require meticulous 
object detection and text recognition. This being said, none of these solutions were crafted with mobile 
device implementation in mind. It is vital to understand that mobile devices generally have reduced 
processing power compared to desktop or server environments. This difference can lead to longer inference 
times and may limit the complexity of the models, particularly sophisticated CNN models as indicated by Li 
et al. [40]. Moreover, mobile devices are limited by their RAM and storage capacity, which is a problem 
particularly in terms of Large CNN-based models which demand considerable amounts of memory.  To 
deploy CNNs on mobile devices effectively, it is necessary to optimize models through techniques such as 
quantization, pruning, or the use of lightweight architectures such as MobileNet [43]. This optimization can 
be complex and may require specialized knowledge. As a result, the models proposed by Chairh and Green 
[41] and Yang et al. [42] are not suitable for direct implementation on mobile devices, as they utilize 
demanding YOLO and OCR architectures. 

4.2. Mobile application for audiometry test result analysis 

The methodology employed for the processing and classification of pure-tone audiometry test results on 
mobile devices was delineated into three distinct stages: scanning, digitization and classification of 
audiograms.  

The scanning process was realized using the ML Document Scanner from Google’s ML Kit, enabling the 
user to position their smartphone camera over the document for automated capture with perspective 
correction. Afterwards, the YOLOv5 object detection model has been applied to identify and extract the 
audiogram region from hearing test results report.  

The procedure for digitizing an audiogram consists of three fundamental stages: line detection, symbol 
detection, and label detection.  

The process of detecting lines on the audiogram was carried out through the Probabilistic Hough Transform 
approach [44], which is a modification of the classic Hough Transform. Before the application of the Hough 
method, the Canny Edge detection method [45] was implemented to derive an edge map from the images. 
The Canny edge detection algorithm includes five essential steps: 

1. Noise Reduction. The input image is smoothed using a Gaussian filter to reduce noise and 
unwanted details. 

Let 𝐼(𝑥, 𝑦)be the input image, and 𝐺(𝑥, 𝑦) be the Gaussian filter. The smoothed image is obtained 

by convolving 𝐼(𝑥, 𝑦) with 𝐺(𝑥, 𝑦): 

𝐼′(𝑥, 𝑦) = 𝐼(𝑥, 𝑦) ∗ 𝐺(𝑥, 𝑦), 

where Gaussian filter 𝐺(𝑥, 𝑦) is defined by the following formula: 

𝐺(𝑥, 𝑦) =
1

2𝜋𝜎2 ∙ 𝑒
−𝑥2−𝑦2

2𝜎2 , 
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where 𝜎 is the standard deviation of the Gaussian distribution. 

2. Gradient Calculation. The gradient magnitude (𝑀(𝑥, 𝑦)) and direction (𝜃(𝑥, 𝑦)) are computed 

using the Sobel operator [46]: 

𝐺𝑥 =
𝜕𝐼′

𝜕𝑥
, 𝐺𝑦 =

𝜕𝐼′

𝜕𝑦
, 

𝑀(𝑥, 𝑦) = √𝐺𝑥
2 + 𝐺𝑦

2, 

𝜃(𝑥, 𝑦) = 𝑡𝑎𝑛−1 (
𝐺𝑥

𝐺𝑌
). 

3. Non-Maximum Suppression. The gradient magnitude is subjected to thresholding to suppress 

non-maximum values (𝑇1), which results in a binary image featuring edge candidates. 

𝑀′(𝑥, 𝑦) = {
𝑀(𝑥, 𝑦), 𝑀(𝑥, 𝑦) ≥ 𝑇1

0,                         𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

4. Double Thresholding. Two thresholds (𝑇1 and 𝑇2) are utilized on the edge candidates to classify 

them as strong (1) or weak edges (0). 

 

𝐸(𝑥, 𝑦) = {
1,         𝑀′(𝑥, 𝑦) ≥ 𝑇2

0,        𝑀′(𝑥, 𝑦) ≤ 𝑇1
 

5. Edge connection. The contour of the image's edge is associated with the strong edge as a 
reference. Upon connecting to the image edge's endpoint, a search is conducted for the edge point 
that can be continued in the weak edge, thereby obtaining the full edge information of the image. 

Based on obtained edge points from Canny method, the Hough Transform method was used for 
line extraction. In the Hough Transform, a line in the Cartesian coordinate system can be 
represented in polar coordinates as: 

𝑟 = 𝑥𝑐𝑜𝑠(𝜃) + 𝑦𝑠𝑖𝑛(𝜃), 

where r denotes the perpendicular distance from the origin to the line, and θ represents the angle 
formed between the x-axis and the line that is perpendicular to the line being depicted. For every 

edge point (𝑥𝑖 , 𝑦𝑖) in the binary image derived from the Canny method, the associated values of 𝑟 

for a spectrum of angles 𝜃 are calculated: 

𝑟𝑖 = 𝑥𝑖𝑐𝑜𝑠(𝜃) + 𝑦𝑖𝑠𝑖𝑛(𝜃). 

This indicates that for every edge point, a sinusoidal curve is produced in the Hough space, with 

each 𝜃 representing a distinct line that may intersect the point (𝑥𝑖 , 𝑦𝑖). 

Utilizing an accumulator array 𝐴(𝑟, 𝜃), the Hough Transform counts the number of points that 

correspond to each (𝑟, 𝜃) pair. The accumulator is initialized to zero:  

⋁ 𝐴(𝑟, 𝜃) = 0.

𝑟,𝜃
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For every edge point (𝑥𝑖 , 𝑦𝑖), the value 𝑟𝑖 is calculated for a range of angles 𝜃, and for each 

calculated pair (𝑟𝑖 , 𝜃), the accumulator is increased by 1: 

𝐴(𝑟𝑖 , 𝜃) ← 𝐴(𝑟𝑖 , 𝜃) + 1. 

After all edge points have been processed, the accumulator array will display peaks at sites where 
multiple points in the image relate to the same line in Hough space. To ascertain these peaks, a 

threshold 𝑇 is applied: 

𝐼𝑓 𝐴(𝑟, 𝜃) > 𝑇, 𝑡ℎ𝑒𝑛(𝑟, 𝜃) 𝑖𝑠 𝑎 𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑 𝑙𝑖𝑛𝑒. 

The parameters (r,θ) associated with the identified lines can be transformed back into the Cartesian 
coordinates corresponding to the lines in the initial image. The line can be represented in the slope-
intercept format as: 

𝑦 =
−𝑠𝑖𝑛(𝜃)

𝑐𝑜𝑠(𝜃)
𝑥 +

𝑟

𝑠𝑖𝑛(𝜃)
. 

To enhance computational efficiency and maintain stable performance, an advanced variant of the 
traditional Hough Transform known as the Probabilistic Hough Transform has been applied. This method, 

rather than utilizing all edge points (𝑥𝑖 , 𝑦𝑖), randomly selects a subset of these points. Furthermore, the 

algorithm guarantees that the chosen points are adequately dispersed to accurately depict the overall edge 
structure. The Probabilistic Hough Transform is especially advantageous for real-time applications and 
minimizes computational complexity, which are a critical factor for mobile devices. 

Moreover, the paper proposes a method that calculates the position of any undetected lines by leveraging 
the spatial coordinates of the two closest detected lines. In the simplest case, when there exist two parallel 

lines 𝑦1 = 𝑚𝑥 + 𝑏1 and 𝑦2 = 𝑚𝑥 + 𝑏2 an interpolated line 𝑦𝑝 that is exactly between these two lines 

can be expressed as:  

𝑦𝑝 = 𝑚𝑥 +
𝑏1 + 𝑏2

2
. 

In more complex scenarios, when it is necessary to determine the equation of a line derived from two lines 
that are spaced further apart, the sole distinction will involve calculating the y-intercept (b) while considering 
the number of steps (assuming the lines are to maintain equal distance from one another). 

In the realm of symbol detection, the architecture of YOLOv5s was employed to accurately identify symbols 
on audiograms. A total of 8 distinct classes were established, each corresponding to various audiological 
symbols, including those from air and bone conduction from both ears, along with a masked version of the 
symbols. For label detection, Optical Character Recognition (OCR) technology was utilized, particularly the 
Machine Learning Kit Text Recognition v2 API developed by Google, alongside the fine-tuned YOLOv5s 
model. Fine-tuning refers to the act of altering a pre-trained model to make it suitable for a new, related task, 
which in this instance involved the detection of labels in audiograms. For this purpose, the first 10 layers of 
the original YOLOv5 model (trained on the COCO dataset) were frozen, while the rest have been retrained 
on 987 instances of the audiogram label data for 1000 epochs. The fine-tuning process employs transfer 
learning, leveraging the features that the model has already acquired from large datasets, leading to 
expedited training times and often improved outcomes. Fine-tuning is particularly effective when working 
with a limited amount of labeled data. Since the model has been trained on a large dataset previously, it can 
successfully leverage this knowledge for the new task, needing fewer examples to achieve a satisfactory 
level of performance. 

In the domain of audiogram classification, the Bi-LSTM model, as specified in P4, has been implemented. 
The original Bi-LSTM model, which was developed using Keras, has been adapted into TensorFlow Lite 
format through the use of post-training quantization techniques. Overall, quantization is the method of using 
lower-bit representations instead of higher-bit representations for a specific real-valued number. For 
example, a continuous real number, which is usually represented as a 32-bit floating-point number, can be 
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approximated with a discrete representation like an 8-bit integer. In deep learning, model parameters, such 
as weights and biases, are initially stored as 32-bit floating-point numbers to enable high-precision 
calculations during the training phase. After the training process is completed, these parameters can be 
reduced to 16-bit floating-point or 8-bit integer representations. This reduction in precision leads to a 
decrease in the overall size of the model, thus improving its efficiency for deployment on mobile devices 
[47]. Moreover, all YOLOv5s models utilized during the digitalization phase also required optimization for 
mobile functionality. Optimization minimizes the computational burden of the model, thereby reducing 
latency during inference, which enables models to operate more swiftly and efficiently—an essential 
requirement for real-time applications. Furthermore, optimized models utilize less power, a factor that is 
especially critical for mobile devices dependent on battery longevity. 

In the process of evolving mobile-optimized AI models, the 5-fold cross-validation method was utilized. The 
performance assessment of the YOLOv5 model was performed using the mean average precision (mAP) 
metric, a recognized benchmark for evaluating the success of object detection. The overall average 
precision (AP) is calculated by averaging the AP values derived at each IoU threshold outlined below: 

𝑚𝐴𝑃 =
1

𝑁
∑ 𝐴𝑃𝑖

𝑁

𝑖=1

, 

where 𝐴𝑃𝑖 is the average precision of each class and 𝑁 is the total number of classes. In the paper the IoU 

threshold was set at 0.5. 

The paper also presents a manual evaluation of the application’s performance across devices with varying 
budget options. The complete system underwent testing using a collection of twelve audiograms, each 
differing in complexity, under two distinct lighting conditions (50 lux and 500 lux) across three separate 
devices. The app's performance on various smartphone cameras was evaluated by quantifying the number 
of audiogram lines that were not accurately detected by the application due to inadequate image quality. 
Furthermore, any detection errors noted during the testing process were utilized to assess the efficacy of 
the line interpolation techniques incorporated within the application. 

The essential technical requirements for using the developed mobile application consist of a minimum 
Android version of 9, at least 6 GB of RAM, a minimum of 400 MB of storage capacity, and a camera sensor 
with a resolution of at least 12 MP. At the time of writing, new devices that meet these specifications can be 
obtained for under 100 USD, while used devices can be had for less than 50 USD. This makes the 
application viable for use even in low-income areas. 

The proposed model for audiogram detection based on YOLOv5, reached an 99% mAP50. Relative to the 
findings of Chairh and Green [41], this model demonstrated a significant enhancement in mAP50, with an 
improvement of 15 percentage points. In contrast, Yang et al. [42] reported an exceptional 100% accuracy; 
however, their results did not address mAP50, making it difficult to perform direct comparisons. 

In analyzing the symbol detection model, the performance metrics stand out, with a mAP50 of 98%. When 
these results are compared to those from alternative symbol detection models, the study by Chairh and 
Green [41] shows a significantly lower score of 39% mAP@50. Additionally, when evaluating the outcomes 
presented by Yang et al. [42], the accuracy achieved is closely aligned with that of the model in 
question(98.11%), although it should be noted that in this case the authors also failed to provide a clear 
statement regarding the mAP50 value. 

In terms of the label detection, the proposed model achieved a mAP@50 of 99%. The comparative analysis 
shows that the performance metrics of the presented model greatly exceed those of Chairh and Green [41], 
whose model achieved 34% mAP@50. Furthermore, the study conducted by Yang et al. [42] takes a 
different approach from training a YOLO-based model, focusing entirely on an OCR system that reaches an 
accuracy close to 99%, with aligns with the 99% mAP@50 of the model presented. This being said, in the 
proposed application the label detection system integrates OCR results with those from YOLO for a more 
thorough label detection. The merging of these two models produces superior results under conditions of 
noisy images. This is particularly noticeable when the OCR does not recognize blurred labels, while the 
YOLO model manages to detect them. 
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The manual evaluation of the application revealed it to be fully functional across all tested devices. In more 
intricate scenarios, the line interpolation feature became progressively essential, yet the system continued 
to exhibit proficiency in accurate audiogram classification. Higher-end devices displayed superior 
performance in the Hough line detection system, however even devices from lower-cost options exhibited 
commendable results. 

In conclusion, the research introduces a mobile application aimed at the thorough classification of hearing 
loss types by utilizing audiograms obtained via a smartphone camera operating on the Android platform. 
The application employs state-of-the-art techniques for the scanning, digitization, and classification of 
audiograms. The digitized audiograms are classified using the Bi-LSTM model from a prior study (P4). 
Moreover, the application showcased has the capacity to function as an accessible and detailed diagnostic 
support tool for physicians in clinical settings. 

 

4.3. Author’s contribution to the state of the art 

✓ The pioneering app equipped with a fully on-device AI-enabled tool for the interpretation of pure-
tone audiograms utilizing a smartphone. This strategy delivers real-time and fully offline diagnostic 
support, representing a crucial innovation for limited-resource areas. 

✓ The application has been released under an open-source license to promote transparency, 
reproducibility, and worldwide collaboration. It allows for customization and adaptation to different 
clinical settings. 

✓ A three-stage processing architecture - audiogram detection, audiogram digitalization and hearing 
loss classification - has been integrated into a seamless automated diagnostic workflow. 

✓ An innovative technical pipeline has been developed for label detection, integrating the results of 
OCR and YOLOv5. 

✓ The developed app was tested across different smartphones, including low-, mid-, and high-tier 
options, in several scenarios to validate performance consistency. 

✓ The software responds to the rising global challenge of hearing loss, especially in locations that do 
not have access to specialized audiological services, facilitating the app to be utilized on devices 
available for under 50 USD. 

4.4. Summary of audiogram classification in mobile app 

This section is a summary of the mobile app allowing to classify audiograms described in (P5). 

Outside of tonal audiometry laboratories, hearing evaluations are usually conducted through analysis of 
audiogram images. Thus, application of the state-of-the-art  classification models referenced in publications 
P1-P4 e.g. in a general practitioners office necessitated the development of a tool extract audiometric data 
from a printed audiogram. Furthermore, the objective was to design a user-friendly tool that could be 
integrated into a medical setting, while ensuring patient confidentiality and eliminating the need for costly 
equipment to support the classification model. Consequently, in light of contemporary medical trends [48], 
the decision was made to create an application capable of swiftly scanning the test result report, extracting 
audiometry data and immediate interpretation of the findings. An additional factor considered was to perform 
all calculations on the mobile device itself, thereby avoiding the transmission of data to an external server 
and mitigating the risk of storing sensitive patient information. 

An Android application meeting the requirements described above has been successfully developed under 
an open-source license, thus allowing further development. All code is available on GitHub [49]. 

The application was developed by introducing a three-step process: scanning, digitizing, and classifying the 
audiogram. All detection models were evaluated using standard metrics, and the application was subjected 
to thorough manual testing to assess its overall functionality. The findings unequivocally demonstrate that 
the application is appropriate for deployment even in low-income medical settings. 
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5. Summary and conclusions 

This chapter concludes the dissertation based on a consistent series of five publications, which covered the 
title research on application of artificial intelligence algorithms for analysis of pure tone audiometry. 

Section 5.1 summarizes the results of the presented research in terms of meeting the set research goals 
and verifying the research hypotheses formulated in Section 1.3. Additionally, the obtained results are briefly 
commented in the context of other results from related literature. The final Section 5.2 outlines potential 
areas for the further research in application of AI in the field of audiology. 

5.1. Summary of research goals and conclusion 

The research goal (G1), aiming for review of existing classification models of pure tone audiometry data and 
their possibility to be applied in medical settings, has been achieved and is covered primarily by publication 
(P1) and (P4). Given that only two publications exist concerning the classification of hearing loss types, a 
standalone review paper on this topic was not feasible. In summary, the first of the existing solutions, 
proposed by Elbaşı and Obali [20], classified  raw audiometry data with an accuracy of only 95.5% and was 
evaluated on a small dataset comprising merely 200 samples. The second solution, presented by Crowson 
et al. [21], attained a satisfactory accuracy level of 97.5% using the ResNet-101 model. However, this was 
accomplished on a specific set of audiogram images. While the structure of audiograms is generally 
consistent, there can be notable variations between audiograms produced by different hardware and 
software configurations. In addition to differences in background and line colors, audiograms may also vary 
in the volume of information presented (e.g. they may provide data for one ear or both). Consequently, a 
universal approach to classifying tonal audiometry results cannot rely solely on an image classifier. 

The goal (G2), which aimed to test different neural network architectures on raw audiometry data to develop 
a model for hearing loss type classification has also been successfully achieved. The related research has 
been published in papers (P1) — (P3), which describe results of testing 15 distinct machine learning and 
deep learning models. In summary, the best results have been obtained by models based on CNN and RNN 
architectures. 

To goal (G3), which aimed to develop a deep learning model for hearing loss type classification accurate 
enough to allow its implementation in clinical settings was successfully achieved in (P4). In conclusion, the 
Bidirectional Long Short-Term Memory architecture has been developed and assessed for the purpose of 
classifying audiometry test results into four distinct categories: normal hearing, conductive hearing loss, 
mixed hearing loss, and sensorineural hearing loss. The network has been trained on 15,046 hearing test 
results that were analyzed and categorized by professional audiologists. The proposed model attains a 
classification accuracy of 99.33% on external datasets, meeting the accuracy requirements and showing an 
improvement over the 97.5% accuracy reported by Crowson et al. [21]. 

Finally, to the goal (G4), which aimed to create of a mobile application allowing for the use of the previously 
developed to classify the type of hearing loss from a photograph of audiometric test results has been 
successfully achieved in (P5). In summary, the application facilitates the scanning of hearing reports, 
automatically detects and separates audiograms, digitizes them utilizing YOLO, OCR, and image 
processing techniques. Subsequently, it employs the model introduced in (P4), which is optimized for mobile 
devices, to classify the scanned audiograms as either normal hearing or one of the three types of hearing 
loss. 

As a result, it can be concluded that all the research goals of this dissertation have been successfully 
accomplished. Meeting all the research targets derived from the research hypotheses also permits the 
evaluation of the research hypotheses themselves. 

Hypothesis H1 stated that “The application of modern neural network architectures to classification of 
hearing loss types based on audiometric data can push the state of the art and deliver performance and 
accuracy viable for introduction in clinical practice”. Validating this hypothesis is directly associated with the 
accomplishment of objective G3 and the publication (P4), where the proposed Bi-LSTM model realized an 
accuracy of 99.33%, in contrast to the 95.5% accuracy of the solution offered by Elbaşı and Obali [20] on 
pure audiometric data. Moreover, the proposed Bi-LSTM model exhibited a greater accuracy than that 
reported by Crowson et al. [21], which was 97.5% on raster data. In both cases, the results were derived 
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from datasets that were significantly smaller and likely less representative than that on which the proposed 
Bi-LSTM model was trained. To summarize, the deployment of advanced neural networks, notably those 
founded on RNN principles, can enhance the present state of the art in terms of hearing loss types, 
while the achieved accuracy makes the developed model viable for introduction in clinical practice 

Hypothesis H2 declared that “Modern neural network architectures dedicated for processing raster and time-
series data are capable of accurate classification of raw tonal audiometry test results”. Establishing this 
hypothesis is intrinsically connected to objective G2 and the publications (P1 – P3). The novel methodology 
for the interpretation of pure audiometric data as a time series yielded surprisingly positive results. This was 
already demonstrated in publication P1, where the RNN model achieved a notably better performance (96% 
achieved by simple RNN) on the binary classification challenge than the more commonly employed 
feedforward network model for this data type (94%). Furthermore, the CNN, which converted the tonal 
audiometry results into a matrix with pixel values corresponding to the individual tonal points, showed a 
slightly inferior performance compared to the RNN at 95%. Similar relationships were observed in the more 
intricate evaluations of the algorithms and architectures discussed in (P2) and (P3). None of the machine 
learning models crossed the 86% accuracy threshold when the trained on the original tabular data structure. 
In contrast, altering the data structure yielded results of 95.63% for the LSTM network (when converted to 
time series) and 93.76% for the CNN network (when transformed to raster). In conclusion, advanced neural 
network architectures that are specifically designed to handle raster and time series data can effectively 
classify raw tonal audiometry test results. 

Finally, hypothesis H3 stated that “It is possible to optimize modern neural network architectures to efficiently 
operate on smartphones which cost less than 100 USD, thus providing healthcare professionals around the 
world with a mobile application for classification of hearing loss types based on images of hearing test results 
captured with a smartphone camera”. The process of validating this hypothesis is directly related to the 
fulfillment of objective G4 and the publication (P5). Given the substantial need for this type of application in 
developing countries, the app was purposefully tested on devices that can be purchased for less than 100 
USD. The results of the tests clearly indicated that the app is entirely capable of classifying the type of 
hearing loss based on a photograph taken with even a less powerful camera (with the minimum sensor 
resolution being set at 12 MP). Moreover, the application can operate independent of a network connection, 
with all calculations being performed locally by AI models optimized for mobile devices, ensuring enhanced 
security of patient data. The overall findings, presented in (P5), demonstrate that the application is 
appropriate for deployment in low-income medical settings. In conclusion, it is possible to optimize 
modern neural network architectures to efficiently operate on smartphones which cost less than 100 
USD, thus providing healthcare professionals around the world with a mobile application for 
classification of hearing loss types based on images of hearing test results captured with a 
smartphone camera. 

Additionally, this dissertation, based on the concise series of five published articles, proves the following 
contributions of the author to the state of the art in application of artificial intelligence algorithms for analysis 
of pure tone audiometry: 

C1. The author illustrates that recurrent neural networks (RNNs) can effectively capture temporal 

dependencies in audiometric patterns, surpassing the performance of conventional multi-layer 

perceptron (MLPs). 

C2. The Bi-LSTM model proposed by the author has reached a classification accuracy of 99.33%, 

exceeding the current state-of-the-art in the classification of raw audiometry data, as noted by Elbaşı 

and Obali [20], who reported an accuracy of 95.5%. Furthermore, the performance is also superior 

to the existing state-of-the-art in raster audiogram classification, as demonstrated by Crowson et al. 

[21], which achieved an accuracy of 97.5%. 

C3. The author introduced an application that provides professional audiologists with the capability to 

employ an AI decision support system for tonal audiometry test result interpretation, potentially 

reducing their workload, enhancing diagnostic precision, and minimizing the chances of human 

error. 
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C4. The author has developed an innovative open-source mobile application that features a fully on-

device AI-enabled tool designed for interpreting pure-tone audiograms through a smartphone. This 

approach significantly advances the field by providing diagnostic support that is both real-time and 

designed for offline use to professionals as well as general practitioners. 

Table 6 presents the relationship between hypotheses (H1) – (H3), the corresponding research goals (G1) 
— (G4) and author’s contributions to the state of the art (C1) — (C4). 

Hypotheses Research goal Publication Dissertation 
chapter 

Author’s 
contribution 

H1 G3 P4 3.3 C2, C3 

H2 G1, G2 P1, P2, P3 3.1, 3.2 C1 

H3 G4 P5 4 C3, C4 

Table 6. The relationship between hypotheses (H1) – (H3), the corresponding research goals (G1) — 
(G4) and author’s contributions to the state of the art (C1) — (C4). 

5.2. Closing remarks and areas for future research 

This thesis presents a comprehensive study that leads to a proposed author's solution for the 
implementation of artificial intelligence algorithms in the analysis of tonal audiometry. The proposed model 
for classifying types of hearing loss (including normal hearing) has demonstrated enhanced accuracy and 
has been trained on a considerably larger dataset than those available in the existing literature. Furthermore, 
a robust mobile application has been created under an open-source license, facilitating easy access for 
medical professionals to the classification model on their smartphones. However, the research in that field 
might be continued, in particular in the new potential areas of AI application in audiology, which have been 
outlined by the author in conclusions of (P4) and (P5) articles. 

The potential areas for further research include, but are not limited to: 

A1. The development of a model intended to support a more accurate classification of test results, 
which would factor in the probability of certain hearing disorders (e.g. otitis media, otosclerosis, 
noise-induced hearing loss, Ménière's disease, acoustic schwannoma, etc.). 

A2. Creation of a similar mobile application for audiogram classification, specifically designed for 
iOS platforms. 

A3. Design of an audiogram digitalization system that is effective for both printed and hand-drawn 
audiograms. 

A4. The continuous enhancement of the mobile app is intended to enable a precise hearing 
evaluation to be carried out at home, incorporating automatic classification. 

A promising outcome of this dissertation is the cooperation between Gdansk University of Technology and 
Medical University of Gdansk, represented by doctors from the Department of Otolaryngology. The 
integration of knowledge from two entirely distinct domains facilitates the development of solutions that 
catalyze advancements in both information technology and healthcare. 
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